The Visual Computer

, Volume 30, Issue 10, pp 1077–1091 | Cite as

Progressive 3D mesh compression using MOG-based Bayesian entropy coding and gradual prediction

  • Dae-Youn Lee
  • Sanghoon Sull
  • Chang-Su KimEmail author
Original Article


A progressive 3D triangular mesh compression algorithm built on the MOG-based Bayesian entropy coding and the gradual prediction scheme is proposed in this work. For connectivity coding, we employ MOG models to estimate the posterior probabilities of topology symbols given vertex geometries. Then, we encode the topology symbols using an arithmetic coder with different contexts, which depend on the posterior probabilities. For geometry coding, we propose the gradual prediction labeling and the dual-ring prediction to divide vertices into groups and predict later groups more efficiently using the information in already encoded groups. Simulation results demonstrate that the proposed algorithm provides significantly better performance than the conventional wavemesh coder, with the average bit rate reduction of about 16.9 %.


Triangular mesh 3D mesh compression Predictive coding Progressive coding Mixture of Gaussian model Context-based arithmetic coding 



This work was supported partly by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-011031), and partly by the Global Frontier R&D Program on Human-centered Interaction for Coexistence, funded by the NRF grant by the Korean Government (MEST) (NRF-M1AXA003-2011-0031648).


  1. 1.
    Ahn, J.K., Lee, D.Y., Ahn, M., Kim, C.S.: R-D optimized progressive compression of 3D meshes using prioritized gate selection and curvature prediction. J. Vis. Comput. 27(6–8), 769–779 (2011) CrossRefGoogle Scholar
  2. 2.
    Ahn, J.K., Lee, D.Y., Ahn, M., Kim, J., Kim, C., Kim, C.S.: Progressive compression of 3D triangular meshes using topology-based Karhunen–Loève transform. In: Proc. ICIP, pp. 3417–3420 (2010) Google Scholar
  3. 3.
    Alliez, P., Desbrun, M.: Progressive compression for lossless transmission of triangle meshes. In: Proc. ACM SIGGRAPH, pp. 195–202 (2001) Google Scholar
  4. 4.
    Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum 20(3), 480–489 (2001) CrossRefGoogle Scholar
  5. 5.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.M.: MESH: Measuring errors between surfaces using the Hausdorff distance. In: Proc. ICME, vol. 1, pp. 705–708 (2002) Google Scholar
  6. 6.
    Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984) CrossRefGoogle Scholar
  7. 7.
    Courbet, C., Hudelot, C.: Taylor prediction for mesh geometry compression. Comput. Graph. Forum 30(1), 139–151 (2011) CrossRefGoogle Scholar
  8. 8.
    Deering, M.: Geometry compression. In: Proc. ACM SIGGRAPH, pp. 13–20 (1995) Google Scholar
  9. 9.
    Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph. 21(3), 372–379 (2002) CrossRefGoogle Scholar
  10. 10.
    Hoppe, H.: Progressive meshes. In: Proc. ACM SIGGRAPH, pp. 99–108 (1996) Google Scholar
  11. 11.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. ACM SIGGRAPH, pp. 279–286 (2000) Google Scholar
  12. 12.
    Kim, J., Nam, C., Choe, S.: Bayesian AD coder: mesh-aware valence coding for multiresolution meshes. J. Comput. Graph. 35(3), 713–718 (2011) CrossRefGoogle Scholar
  13. 13.
    Lee, D.Y., Ahn, J.K., Ahn, M., Kim, J., Kim, C., Kim, C.S.: 3D mesh compression based on dual-ring prediction and MMSE prediction. In: Proc. ICIP, pp. 921–924 (2011) Google Scholar
  14. 14.
    Lee, H., Lavoué, G., Dupont, F.: Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In: Proc. Vision, Modeling, and Visualization, pp. 73–81 (2009) Google Scholar
  15. 15.
    Lee, H., Lavoué, G., Dupont, F.: Rate-distortion optimization for progressive compression of 3D mesh with color attributes. J. Vis. Comput. 28(2), 137–153 (2012) Google Scholar
  16. 16.
    Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans. Inf. Syst. 16(3), 256–294 (1998) CrossRefGoogle Scholar
  17. 17.
    Pajarola, R., Rossignac, J.: Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph. 6(1), 79–93 (2000) CrossRefGoogle Scholar
  18. 18.
    Peng, J., Huang, Y., Kuo, C.C.J., Eckstein, I., Gopi, M.: Feature oriented progressive lossless mesh coding. Comput. Graph. Forum 29(7), 2029–2038 (2010) CrossRefGoogle Scholar
  19. 19.
    Peng, J., Kuo, C.C.J.: Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans. Graph. 24(3), 609–616 (2005) CrossRefGoogle Scholar
  20. 20.
    Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999) CrossRefGoogle Scholar
  21. 21.
    Schindler, M.: A fast renormalisation for arithmetic coding. In: Proc. Data Compression Conference (1998) Google Scholar
  22. 22.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, pp. 246–252 (1999) Google Scholar
  23. 23.
    Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graph. 17(2), 84–115 (1998) CrossRefGoogle Scholar
  24. 24.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Proc. Graphics Interface, pp. 26–34 (1998) Google Scholar
  25. 25.
    Valette, S., Chaine, R., Prost, R.: Progressive lossless mesh compression via incremental parametric refinement. Comput. Graph. Forum 28(5), 1301–1310 (2009) CrossRefGoogle Scholar
  26. 26.
    Valette, S., Prost, R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Trans. Vis. Comput. Graph. 10(2), 113–122 (2004) CrossRefGoogle Scholar
  27. 27.
    Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Trans. Vis. Comput. Graph. 10(2), 123–129 (2004) CrossRefGoogle Scholar
  28. 28.
    Valette, S., Rossignac, J., Prost, R.: An efficient subdivision inversion for wavemesh-based progressive compression of 3D triangle meshes. In: Proc. ICIP, vol. 1, pp. 777–780 (2003) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Electrical EngineeringKorea UniversitySeoulKorea

Personalised recommendations