The Visual Computer

, Volume 29, Issue 5, pp 369–380 | Cite as

Automatic cage construction for retargeted muscle fitting

  • Xiaosong YangEmail author
  • Jian Chang
  • Richard Southern
  • Jian J. Zhang
Original Article


The animation of realistic characters necessitates the construction of complicated anatomical structures such as muscles, which allow subtle shape variation of the character’s outer surface to be displayed believably. Unfortunately, despite numerous efforts, the modelling of muscle structures is still left for an animator who has to painstakingly build up piece by piece, making it a very tedious process. What is even more frustrating is the animator has to build the same muscle structure for every new character. We propose a muscle retargeting technique to help an animator to automatically construct a muscle structure by reusing an already built and tested model (the template model). Our method defines a spatial transfer between the template model and a new model based on the skin surface and the rigging structure. To ensure that the retargeted muscle is tightly packed inside a new character, we define a novel spatial optimization based on spherical parameterization. Our method requires no manual input, meaning that an animator does not require anatomical knowledge to create realistic accurate musculature models.


Muscle modelling Character animation 



The template model is from the Ultimate Human ( Other mesh data used in this paper were made available by ‘MakeHuman’ (

Supplementary material

(MP4 26.6 MB)


  1. 1.
    Baran, I., Popovic, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3), 72 (2007) CrossRefGoogle Scholar
  2. 2.
    Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 1–10 (2008) CrossRefGoogle Scholar
  3. 3.
    Seo, J., Seol, Y., Wi, D., Kim, Y., Noh, J.: Rigging transfer. Comput. Animat. Virtual Worlds 21(3–4), 375–386 (2010) Google Scholar
  4. 4.
    Kavan, L., Collins, S., Zara, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 1–23 (2008) CrossRefGoogle Scholar
  5. 5.
    Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., Guo, B.: Example-based dynamic skinning in real time. ACM Trans. Graph. 27(3), 1–8 (2008) CrossRefGoogle Scholar
  6. 6.
    Ju, T., Zhou, Q.-Y., van de Panne, M., Cohen-Or, D., Neumann, U.: Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27(5), 1–10 (2008) CrossRefGoogle Scholar
  7. 7.
    Kavan, L., Collins, S., Zara, J., O’Sullivan, C.: Skinning with dual quaternions. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games. ACM, Washington (2007) Google Scholar
  8. 8.
    Park, S.I., Hodgins, J.K.: Data-driven modeling of skin and muscle deformation. ACM Trans. Graph. 27(3), 1–6 (2008) CrossRefGoogle Scholar
  9. 9.
    Hong, M., Jung, S., Choi, M.-H., Welch, S.: Fast volume preservation for realistic muscle deformation. In: ACM SIGGRAPH 2005 Sketches, ACM, New York (2005) Google Scholar
  10. 10.
    Yang, X., Chang, J., Zhang, J.J.: Animating the human muscle structure. Comput. Sci. Eng. 9(5), 39–45 (2007) CrossRefGoogle Scholar
  11. 11.
    Lemos, R., Epstein, M., Herzog, W., Wyvill, B.: Realistic skeletal muscle deformation using finite element analysis. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing. IEEE Comput. Soc., Los Alamitos (2001) Google Scholar
  12. 12.
    Scheepers, F., Parent, R.E., Carlson, W.E., May, S.F.: Anatomy-based modelling of the human musculature. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM/Addison-Wesley, New York/Reading (1997) Google Scholar
  13. 13.
    Pratscher, M., Coleman, P., Laszlo, J., Singh, K.: Outside-in anatomy based character rigging. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, New York (2005) Google Scholar
  14. 14.
    Yang, X., Zhang, J.J.: Automatic muscle generation for character skin deformation. Comput. Animat. Virtual Worlds 17(3–4), 293–303 (2006) CrossRefGoogle Scholar
  15. 15.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20(4), 151–160 (1986) CrossRefGoogle Scholar
  16. 16.
    Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric modeling. SIGGRAPH Comput. Graph. 24(4), 187–196 (1990) CrossRefGoogle Scholar
  17. 17.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York (1996) Google Scholar
  18. 18.
    Kobayashi, K.G., Ootsubo, K.: t-FFD: free-form deformation by using triangular mesh. In: Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications. ACM, New York (2003) Google Scholar
  19. 19.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005) CrossRefGoogle Scholar
  21. 21.
    Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22(7), 623–631 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D.: GPU-assisted positive mean value coordinates for mesh deformations. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, p. 123. Eurographics Association, Aire-la-Ville (2007) Google Scholar
  23. 23.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007) CrossRefGoogle Scholar
  24. 24.
    Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 1–11 (2009) CrossRefGoogle Scholar
  25. 25.
    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 1–10 (2008) CrossRefGoogle Scholar
  26. 26.
    Chen, L., Huang, J., Sun, H., Bao, H.: Technical section: cage-based deformation transfer. Comput. Graph. 34(2), 107–118 (2010) CrossRefGoogle Scholar
  27. 27.
    Kojekine, N., Savchenko, V., Senin, M., Hagiwara, I.: Real-time 3D deformations by means of compactly supported radial basis functions. In: Short Papers Proceedings of Eurographics (2002) Google Scholar
  28. 28.
    Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. In: Computer Graphics Forum, pp. 611–621 (2005) Google Scholar
  29. 29.
    Huang, J., Chen, L., Liu, X., Bao, H.: Efficient mesh deformation using tetrahedron control mesh. Comput. Aided Geom. Des. 26(6), 617–626 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Xian, C., Lin, H., Gao, S.: Automatic generation of coarse bounding cages from dense meshes. In: IEEE International Conference on Shape Modeling and Applications, Beijing (2009) Google Scholar
  31. 31.
    Ben-Chen, M., Weber, O., Gotsman, C.: Spatial deformation transfer. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, New York (2009) Google Scholar
  32. 32.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. 22(3), 358–363 (2003). 2003 CrossRefGoogle Scholar
  33. 33.
    Saba, S.: Barycentric spherical parameterization of Genus-0 3D Meshes (2011). [cited on 16th Feburary, 2011]; Available from
  34. 34.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaosong Yang
    • 1
    Email author
  • Jian Chang
    • 1
  • Richard Southern
    • 1
  • Jian J. Zhang
    • 1
  1. 1.National Centre for Computer AnimationBournemouth UniversityBournemouthUK

Personalised recommendations