The Visual Computer

, Volume 29, Issue 5, pp 359–368 | Cite as

Filtering noise in progressive stochastic ray tracing

Four optimizations to improve speed and robustness
  • Karsten Schwenk
  • Johannes Behr
  • Dieter W. Fellner
Original Article


We present an improved version of a state-of-the-art noise reduction technique for progressive stochastic rendering. Our additions make the method significantly faster at the cost of an acceptable loss in quality. Additionally, we improve the robustness of the method in the presence of difficult features like glossy reflection, caustics, and antialiased edges. We show with visual and numerical comparisons that our extensions improve the overall performance of the original approach and make it more broadly applicable.


Noise reduction Progressive rendering Illumination filtering Antialiasing recovery 



Assets used in this paper are courtesy of Stanford 3D Scanning Repository (Buddha) and Crytek GmbH/Marko Dabrovic (Sponza).


  1. 1.
    Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21 (2009) CrossRefGoogle Scholar
  2. 2.
    Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. Comput. Graph. Forum 30(4), 1361–1368 (2011) CrossRefGoogle Scholar
  3. 3.
    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Trans. Graph. 26(3), Article No. 103 (2007) CrossRefGoogle Scholar
  4. 4.
    Chen, Y.-C., Lei, S.I.E., Chang, C.-F.: Spatio-temporal filtering of indirect lighting for interactive global illumination. Comput. Graph. Forum 31(1), 189–201 (2012) CrossRefGoogle Scholar
  5. 5.
    Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.A.: Edge-avoiding a-trous wavelet transform for fast global illumination filtering. In: HPG’10 Proceedings, pp. 67–75. EG Association, Aire-la-Ville (2010) Google Scholar
  6. 6.
    Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM Trans. Graph. 30, 69 (2011) CrossRefGoogle Scholar
  7. 7.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: ECCV’10 Proceedings, pp. 1–14. Springer, Berlin (2010) Google Scholar
  8. 8.
    Pajot, A., Barthe, L., Paulin, M.: Sample-space bright spots removal using density estimation. In: GI’11 Proceedings, pp. 159–166. Canadian HCCS (2011). School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada Google Scholar
  9. 9.
    Pham, T.Q., van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: IEEE Intern. Conf. on Multimedia & Expo, pp. 1–4. IEEE Press, New York (2005) Google Scholar
  10. 10.
    Rousselle, F., Knaus, C., Zwicker, M.: Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 159, 1 (2011) CrossRefGoogle Scholar
  11. 11.
    Rushmeier, H.E., Ward, G.J.: Energy preserving non-linear filters. In: SIGGRAPH’94 Proceedings, pp. 131–138. ACM, New York (1994) Google Scholar
  12. 12.
    Schwenk, K., Kuijper, A., Behr, J., Fellner, D.W.: Practical noise reduction for progressive stochastic ray tracing with perceptual control. IEEE Comput. Graph. Appl. (2012). doi: 10.1109/MCG.2012.30
  13. 13.
    Suykens, F., Willems, Y.D.: Adaptive filtering for progressive Monte Carlo image rendering. In: WSCG’00 Proceedings (2000) Google Scholar
  14. 14.
    Yang, L., Sander, P.V., Lawrence, J., Hoppe, H.: Antialiasing recovery. ACM Trans. Graph. 30, 22 (2011) Google Scholar
  15. 15.
    Yang, Q., Tan, K.-H., Ahuja, N.: Real-time o(1) bilateral filtering. In: CVPR’09 Proceedings, pp. 557–564. IEEE Comput. Soc., Los Alamitos (2009) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Karsten Schwenk
    • 1
  • Johannes Behr
    • 1
  • Dieter W. Fellner
    • 1
    • 2
    • 3
  1. 1.Fraunhofer IGDDarmstadtGermany
  2. 2.TU DarmstadtDarmstadtGermany
  3. 3.TU GrazGrazAustria

Personalised recommendations