The Visual Computer

, Volume 28, Issue 10, pp 959–969 | Cite as

Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory

  • David Günther
  • Jan Reininghaus
  • Hubert Wagner
  • Ingrid Hotz
Original Article


We propose an efficient algorithm that computes the Morse–Smale complex for 3D gray-scale images. This complex allows for an efficient computation of persistent homology since it is, in general, much smaller than the input data but still contains all necessary information. Our method improves a recently proposed algorithm to extract the Morse–Smale complex in terms of memory consumption and running time. It also allows for a parallel computation of the complex. The computational complexity of the Morse–Smale complex extraction solely depends on the topological complexity of the input data. The persistence is then computed using the Morse–Smale complex by applying an existing algorithm with a good practical running time. We demonstrate that our method allows for the computation of persistent homology for large data on commodity hardware.


Persistent homology Morse–Smale complex Discrete Morse theory Large data 



This work was supported by the MPI of Biochemistry, the MPI for Informatics, the DFG Emmy-Noether research program, and Foundation for Polish Science Geometry and Topology in Physical Models program. We thank Daniel Baum for providing the molecule data set. We also thank Herbert Edelsbrunner and Chao Chen for many fruitful discussions.


  1. 1.
    The Institute of Computer Graphics and Algorithms.
  2. 2.
    Volvis: Voxel Data Repository (2010).
  3. 3.
    Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete & Computational Geometry 47(2), 1–31 Google Scholar
  4. 4.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. Proc. - IEEE Conf. Inf. Vis. 16, 1251–1260 (2010) Google Scholar
  5. 5.
    Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1–3), 101–113 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chen, C., Kerber, M.: An output-sensitive algorithm for persistent homology. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG ’11), pp. 207–216. ACM, New York (2011) Google Scholar
  7. 7.
    Chen, C., Kerber, M.: Persistent homology computation with a twist. In: 27th European Workshop on Comp. Geometry (EuroCG 2011) (2011) Google Scholar
  8. 8.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society (2010) Google Scholar
  10. 10.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Forman, R.: A user’s guide to discrete Morse theory. In: Seminaire Lotharingien de Combinatoire, vol. B48c, pp. 1–35 (2002) Google Scholar
  13. 13.
    Günther, D., Reininghaus, J., Prohaska, S., Weinkauf, T., Hege, H.C.: Efficient computation of a hierarchy of discrete 3d gradient vector fields. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4–6, pp. 15–30. Springer, Berlin (2012) CrossRefGoogle Scholar
  14. 14.
    Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Memory efficient computation of persistent homology for 3D image data using discrete Morse theory. In: Lewiner, T., Torres, R. (eds.) Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI), Maceió, Los Alamitos, vol. 24, pp. 25–32. IEEE Press, New York (2011) CrossRefGoogle Scholar
  15. 15.
    Gyulassy, A., Bremer, P.T., Hamann, B., Pascucci, V.: A practical approach to Morse–Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14, 1619–1626 (2008) CrossRefGoogle Scholar
  16. 16.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) zbMATHGoogle Scholar
  17. 17.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Math. Sciences, vol. 157. Springer, Berlin (2004) zbMATHGoogle Scholar
  18. 18.
    Lewiner, T.: Geometric discrete Morse complexes. Ph.D. thesis, Dept. of Mathematics, PUC-Rio (2005) Google Scholar
  19. 19.
    Lewiner, T., Lopes, H., Tavares, G.: Optimal discrete Morse functions for 2-manifolds. Comput. Geom. 26(3), 221–233 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Milnor, J.: Topology from the Differentiable Viewpoint. University of Virginia Press, Charlottesville (1965) zbMATHGoogle Scholar
  21. 21.
    Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry (SoCG ’11), pp. 216–225. ACM, New York (2011) Google Scholar
  22. 22.
    Morozov, D.: Persistence algorithm takes cubic time in the worst case. In: BioGeometry News. Duke Computer Science, Durhmam (2005) Google Scholar
  23. 23.
    Mrozek, M., Wanner, T.: Coreduction homology algorithm for inclusions and persistent homology. Comput. Math. Appl. 60, 2812–2833 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Reininghaus, J., Günther, D., Hotz, I., Prohaska, S., Hege, H.C., TADD: A computational framework for data analysis using discrete Morse theory. In: Mathematical Software (ICMS 2010), pp. 198–208. Springer, Berlin (2010) CrossRefGoogle Scholar
  25. 25.
    Robins, V., Wood, P., Sheppard, A.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011) CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Wagner, H., Chen, C., Vucini, E.: Efficient computation of persistent homology for cubical data. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization. II. Mathematics and Visualization (TopoInVis 2011), Zürich, Switzerland, April 4–6, pp. 91–108. Springer, Berlin (2012) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • David Günther
    • 1
  • Jan Reininghaus
    • 2
  • Hubert Wagner
    • 3
  • Ingrid Hotz
    • 2
  1. 1.Computer GraphicsMax-Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Zuse Institute BerlinBerlinGermany
  3. 3.Institute of Computer ScienceJagiellonian UniversityKrakowPoland

Personalised recommendations