The Visual Computer

, Volume 29, Issue 2, pp 141–153 | Cite as

From real cities to virtual worlds using an open modular architecture

  • Sergiy Byelozyorov
  • Rainer Jochem
  • Vincent Pegoraro
  • Philipp Slusallek
Original Article
  • 350 Downloads

Abstract

The technologies for the Web and virtual worlds are currently converging, but although there are some efforts made to integrate them with each other, they typically rely on technologies foreign to most Web developers. In this paper, we present a new open architecture that combines several emerging and established technologies to provide convenient tools for developing virtual worlds directly in the Web. These technologies are easy to learn and understand by the Web community and allow for quick prototyping. Overall the modular architecture allows virtual worlds to be developed more quickly and more widely deployed. Additionally, we demonstrate that creating an adequate virtual environment can be an easy task when applying the principles of crowd-sourcing. We present an application that uses one of the largest available open data sources of geospatial information to bring 3D cities from the real world into the virtual environment.

Keywords

Virtual worlds The Web Open architecture Geographic information system 

Notes

Acknowledgements

We would like to thank the Embodied Agents Research Group that has kindly provided an Amber model for the user’s avatar. Also, we would like to thank the many contributors of OpenStreetMap, who have provided high-quality data enabling us to generate a 3D version of our world based on their data.

References

  1. 1.
    Behr, J., Eschler, P., Jung, Y., Zöllner, M.: X3DOM: A DOM-based HTML5/X3D integration model. In: Proceedings of the 14th International Conference on 3D Web Technology, Web3D ’09, pp. 127–135. ACM Press, New York (2009) CrossRefGoogle Scholar
  2. 2.
    Byelozyorov, S., Pegoraro, V., Slusallek, P.: An open modular architecture for effective integration of virtual worlds in the web. In: Gavrilova, M.L. (ed.) CyberWorlds, pp. 46–53. IEEE Press, New York (2011) Google Scholar
  3. 3.
  4. 4.
  5. 5.
    Group, K.: OpenGL ES common profile specification version 2.0.25. (2010). http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
  6. 6.
    Horn, D., Cheslack-Postava, E., Mistree B, F.T., Azimy, T., Terrace, J., Freedman M, J., Levis, P.: To infinity and not beyond: scaling communication in virtual worlds with Meru. Tech. rep, Stanford University (2010) Google Scholar
  7. 7.
  8. 8.
    Khronos Group: WebGL Specification (2011). https://www.khronos.org/registry/webgl/specs/1.0/
  9. 9.
    Klein, F., Rubinstein, D., Byelozyorov, S., Sons, K., Philipp, S.: Xflow—declarative Data Processing for the Web (2012). Planned to be published in Web3D Google Scholar
  10. 10.
    Linden Lab: Second Life (2012). http://secondlife.com/
  11. 11.
    Multiverse (2012). http://www.multiverse.net
  12. 12.
    Neis, P., Zielstra, D., Zipf, A.: The street network evolution of crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future Internet 4(1), 1–21 (2011). doi:10.3390/fi4010001. http://www.mdpi.com/1999-5903/4/1/1/ CrossRefGoogle Scholar
  13. 13.
    Open Cobalt (2012). http://www.opencobalt.org/
  14. 14.
    Open Simulator (2012). http://opensimulator.org
  15. 15.
    OpenStreetMap (2012). http://www.openstreetmap.org/
  16. 16.
    OpenStreetMap 3D (2012). http://www.osm-3d.de
  17. 17.
    OpenStreetMap 3D Development (2012). http://wiki.openstreetmap.org/wiki/3D_Development
  18. 18.
    General OpenStreetMap Statistics (2012). http://wiki.openstreetmap.org/wiki/Statistics
  19. 19.
    Statistics on Taguse in OpenStreetMap (2012). http://taginfo.openstreetmap.org/
  20. 20.
  21. 21.
    Red Dwarf (2012). http://www.reddwarfserver.org/
  22. 22.
    Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: XML3D: interactive 3D graphics for the web. In: Proceedings of the 15th International Conference on Web 3D Technology, pp. 175–184 (2010) CrossRefGoogle Scholar
  23. 23.
    Sons, K., Slusallek, P.: XML3D physics: Declarative physics simulation for the Web. In: Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS). Eurographics Association (2011) Google Scholar
  24. 24.
    W3C: VRML97 and Related Specifications (1997). http://www.web3d.org/x3d/specifications/vrml/
  25. 25.
    W3C: CSS 3D Transforms Module Level 3 (2009). http://www.w3.org/TR/css3–3d-transforms/
  26. 26.
    W3C: Document Object Model (2011). http://www.w3.org/DOM/
  27. 27.
    W3C: HTML5 Draft Specification (2011). http://dev.w3.org/html5/spec/
  28. 28.
    W3C: Hypertext Transfer Protocol (2011). http://www.w3.org/Protocols/rfc2616/rfc2616.html
  29. 29.
    W3C: Scalable Vector Graphics. Tech. rep., W3C (2011) Google Scholar
  30. 30.
    W3C: The WebSocket API (2011). http://dev.w3.org/html5/websockets/
  31. 31.
    W3C: XMLHttpRequest. Tech. rep., W3C (2011). http://www.w3.org/TR/XMLHttpRequest/
  32. 32.
    Web3DConsortium: ISO/IEC 19775:200x—Extensible 3D (X3D) (2008). http://www.web3d.org/x3d/specifications/
  33. 33.
    WHATWG: Web Workers (2011). http://whatwg.org/ww

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Sergiy Byelozyorov
    • 1
  • Rainer Jochem
    • 2
  • Vincent Pegoraro
    • 3
  • Philipp Slusallek
    • 4
  1. 1.Saarland UniversitySaarbrückenGermany
  2. 2.DFKISaarbrückenGermany
  3. 3.Saarland University and MMCISaarbrückenGermany
  4. 4.Saarland University and DFKISaarbrückenGermany

Personalised recommendations