The Visual Computer

, Volume 28, Issue 6–8, pp 889–898 | Cite as

More realistic, flexible, and expressive social crowds using transactional analysis

  • Brian C. RicksEmail author
  • Parris K. Egbert
Original Article


Recent algorithms have been able to simulate “social crowds” that allow agents to interact socially as opposed to only treating other agents as obstacles. Unfortunately, past social crowd algorithms lack realism and flexibility because they do not allow agents to move in and out of different and repeated social interactions, are built around a specific obstacle avoidance algorithm, or are tuned only for a specific social setting and do not allow for artist directed changes. We propose a new, simplified social crowd algorithm that focuses on the evolving social needs of agents and allows each agent to join and leave different encounters as desired. Our algorithm is based on the psychology research area of transactional analysis, does not require a specific obstacle avoidance algorithm, and allows for easy artist direction for determining the precise social environment being simulated. Our algorithm runs in real-time with 3,000 to 4,000 agents without the restrictions of previous research.


Crowd simulation Social crowd simulation Transactional analysis Pair walking 

Supplementary material

(MPG 105.5 MB)


  1. 1.
    Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935 (2008) CrossRefGoogle Scholar
  2. 2.
    Berne, E.: Transactional analysis: a new and effective method of group therapy. Am. J. Psychother. 12(4), 735 (1958) Google Scholar
  3. 3.
    Berne, E.: What Do You Say After You Say Hello?: The Psychology of Human Destiny. Bantam, New York (1984) Google Scholar
  4. 4.
    Berne, E.: Games People Play: The Psychology of Human Relationships. Penguin, Baltimore (2010) Google Scholar
  5. 5.
    Berne, E., Steiner, C., Kerr, C.: Beyond Games and Scripts. Ballantine Books, New York (1981) Google Scholar
  6. 6.
    Carstensdottir, E., Gudmundsdottir, K., Valgardsson, G., Vilhjalmsson, H.: Where to sit? The study and implementation of seat selection in public places. In: Intelligent Virtual Agents, pp. 48–54 (2011) CrossRefGoogle Scholar
  7. 7.
    Coleman, J., James, J.: The equilibrium size distribution of freely-forming groups. Sociometry 24(1), 36–45 (1961) CrossRefGoogle Scholar
  8. 8.
    Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean personality model. Auton. Agents Multi-Agent Syst. 3, 1217–1220 (2008) Google Scholar
  9. 9.
    Durupınar, F., Pelechano, N., Allbeck, J., Güdükbay, U., Badler, N.: How the ocean personality model affects the perception of crowds. IEEE Comput. Graph. Appl. 31(3) (2011). doi: 10.1109/MCG.2009.105
  10. 10.
    Goldberg, L.: An alternative “description of personality”: the big-five factor structure. J. Pers. Soc. Psychol. 59(6), 1216 (1990) CrossRefGoogle Scholar
  11. 11.
    Gröschel, A.: Towards believable crowd simulation for interactive real-time applications. Thesis, Hochshule fur Technik und Wirtshaft Berlin (2011) Google Scholar
  12. 12.
    Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128 (2010) Google Scholar
  13. 13.
    Harris, T.: I’m Okay, You’Re Okay: A Practical Guide to Transactional Analysis. Harper Perennial, New York (2004) Google Scholar
  14. 14.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. 51(5) (1995). doi: 10.1103/PhysRevE.51.4282
  15. 15.
    James, J.: The Distribution of Free-Forming Small Group Size. American Sociological Review (1953) Google Scholar
  16. 16.
    Jan, D., Traum, D.: Dialog simulation for background characters. In: Intelligent Virtual Agents, pp. 65–74 (2005) CrossRefGoogle Scholar
  17. 17.
    Jan, D., Traum, D.: Dynamic movement and positioning of embodied agents in multiparty conversations. In: Proceedings of the Workshop on Embodied Language Processing, pp. 59–66 (2007) CrossRefGoogle Scholar
  18. 18.
    Karamouzas, I., Overmars, M.: Simulating the local behaviour of small pedestrian groups. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 183–190 (2010) CrossRefGoogle Scholar
  19. 19.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10,047 (2010) CrossRefGoogle Scholar
  20. 20.
    Musse, S., Thalmann, D.: A model of human crowd behavior: group inter-relationship and collision detection analysis. Comput. Animat. Simul. 97, 39–51 (1997) Google Scholar
  21. 21.
    Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. (TOG) 29(4) (2010) Google Scholar
  22. 22.
    Padilha, E., Carletta, J.: A simulation of small group discussion. In: Proceedings of EDILOG, pp. 117–124 (2002) Google Scholar
  23. 23.
    Patel, J.: Simulation of small group discussions for middle level of detail crowds. DTIC document (2004) Google Scholar
  24. 24.
    Pedica, C., Vilhjálmsson, H., Lárusdóttir, M.: Avatars in conversation: the importance of simulating territorial behavior. In: Intelligent Virtual Agents, pp. 336–342 (2010) CrossRefGoogle Scholar
  25. 25.
    Pedica, C., Vilhjálmsson, H.: Spontaneous avatar behavior for human territoriality. In: Intelligent Virtual Agents, pp. 344–357 (2009) CrossRefGoogle Scholar
  26. 26.
    Pelechano, N., Stocker, C., Allbeck, J., Badler, N.: Being a part of the crowd: towards validating VR crowds using presence. In: Autonomous Agents and Multiagent Systems, pp. 136–142 (2008) Google Scholar
  27. 27.
    Popelová, M., Bída, M., Brom, C., Gemrot, J., Tomek, J.: When a couple goes together: walk along steering. In: Motion in Games, pp. 278–289 (2011) CrossRefGoogle Scholar
  28. 28.
    Reynolds, C.: Steering Behaviors for Autonomous Characters. Game Developers Conference (1999) Google Scholar
  29. 29.
    Ricks, B., Egbert, P.: Improved obstacle relevancy, distance, and angle for crowds constrained to arbitrary manifolds in 3D space. In: Eurographics (2012) Google Scholar
  30. 30.
    Scheflen, A., Ashcraft, N.: Human Territories: How We Behave Space-Time. Prentice Hall, New York (1976) Google Scholar
  31. 31.
    Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. Comput. Animat. Virtual Worlds 20(5–6), 533–548 (2009) CrossRefGoogle Scholar
  32. 32.
    Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 39–47 (2008) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Brigham Young UniversityProvoUSA

Personalised recommendations