Advertisement

The Visual Computer

, Volume 28, Issue 6–8, pp 679–689 | Cite as

Multiple kernels noise for improved procedural texturing

  • G. Gilet
  • J-M. Dischler
  • D. Ghazanfarpour
Original Article

Abstract

Procedural texturing is a well known method to synthesize details onto virtual surfaces directly during rendering. But the creation of such textures is often a long and painstaking task. This paper introduces a new noise function, called multiple kernels noise. It is characterized by an arbitrary energy distribution in spectral domain. Multiple kernels noise is obtained by adaptively decomposing a user-defined power spectral density (PSD) into rectangular regions. These are then associated to kernel functions used to compute noise values by sparse convolution. We show how multiple kernels noise (1) increases the variety of noisy procedural textures that can be modeled and (2) helps creating structured procedural textures by automatic extraction of noise characteristics from user-supplied samples.

Keywords

Procedural textures Rendering Noise-based texturing 

References

  1. 1.
    Bourque, E., Dudek, G.: Procedural texture matching and transformation. Comput. Graph. Forum 23(3), 461–468 (2004) CrossRefGoogle Scholar
  2. 2.
    Cook, R.L., DeRose, T.: Wavelet noise. ACM Trans. Graph. 24, 803–811 (2005) CrossRefGoogle Scholar
  3. 3.
    Dischler, J., Ghazanfarpour, D.: A procedural description of geometric textures by spectral and spatial analysis of profiles. Comput. Graph. Forum 16(3), 129–139 (1997) CrossRefGoogle Scholar
  4. 4.
    Gilet, G., Dischler, J.M., Soler, L.: Procedural descriptions of anisotropic noisy textures by example. In: Eurographics (Short) (2010) Google Scholar
  5. 5.
    Goldberg, A., Zwicker, M., Durand, F.: Anisotropic noise. In: ACM SIGGRAPH, pp. 1–8 (2008) Google Scholar
  6. 6.
    Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: SIGGRAPH, pp. 229–238 (1995) Google Scholar
  7. 7.
    Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D., Lewis, J., Perlin, K., Zwicker, M.: A survey of procedural noise functions. Comput. Graph. Forum 29(8), 2579–2600 (2010) CrossRefGoogle Scholar
  8. 8.
    Lagae, A., Lefebvre, S., Drettakis, G., Dutré, P.: Procedural noise using sparse Gabor convolution. In: SIGGRAPH 2009, pp. 1–10 (2009) CrossRefGoogle Scholar
  9. 9.
    Lagae, A., Vangorp, P., Lenaerts, T., Dutré, P.: Procedural isotropic stochastic textures by example. Comput. Graph. 34(4), 312–321 (2010) CrossRefGoogle Scholar
  10. 10.
    Lewis, J.: Generalized stochastic subdivision. ACM Trans. Graph. 6(3), 167–190 (1987) CrossRefGoogle Scholar
  11. 11.
    Lewis, J.: Algorithms for solid noise synthesis. In: ACM Siggraph, pp. 263–270 (1989) Google Scholar
  12. 12.
    Navarro, R., Portilla, J.: Robust method for texture synthesis-by-analysis based on a multiscale Gabor scheme. In: SPIE, pp. 86–97 (1996) CrossRefGoogle Scholar
  13. 13.
    Perlin, K.: An image synthesizer. In: ACM Siggraph, pp. 287–296 (1985) Google Scholar
  14. 14.
    Perlin, K.: Noise hardware. In: Olano, M. (ed.) Real-Time Shading SIGGRAPH Course Notes (2001) Google Scholar
  15. 15.
    Perlin, K.: Improving noise. ACM Trans. Graph. 21(3), 681–682 (2002) CrossRefGoogle Scholar
  16. 16.
    Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based texture synthesis. In: State of the Art Report, Eurographics 2009 (2009) Google Scholar
  17. 17.
    Worley, S.: A cellular texture basis function. In: SIGGRAPH 96, pp. 291–294 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.XLIMUniversity of LimogesLimogesFrance
  2. 2.LSIITUniversity of StrasbourgIllkirch GrafenstadenFrance

Personalised recommendations