The Visual Computer

, Volume 28, Issue 6–8, pp 701–711 | Cite as

Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting

  • Guojun Chen
  • Pieter Peers
  • Jiawan Zhang
  • Xin Tong
Original Article


In this paper, we present a novel real-time rendering algorithm for heterogenous translucent objects with deformable geometry. The proposed method starts by rendering the surface geometry in two separate geometry buffers—the irradiance buffer and the splatting buffer—with corresponding mipmaps from the lighting and viewing directions, respectively. Irradiance samples are selected from the irradiance buffer according to geometric and material properties using a novel and fast selection algorithm. Next, we gather the irradiance per visible surface point by splatting the irradiance samples to the splatting buffer. To compute the appearance of long-distance low-frequency subsurface scattering, as well as short-range detailed scattering, a fast novel multiresolution GPU algorithm is developed that computes everything on the fly and which does not require any precomputations. We illustrate the effectiveness of our method on several deformable geometries with measured heterogeneous translucent materials.


Translucency Real-time rendering Image-space splatting Heterogeneous Deformable 


  1. 1.
    Carr, N.A., Hall, J.D., Hart, J.C.: Gpu algorithms for radiosity and subsurface scattering. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS’03, pp. 51–59 (2003) Google Scholar
  2. 2.
    Chang, C.-W., Lin, W.-C., Ho, T.-C., Huang, T.-S., Chuang, J.-H.: Real-time translucent rendering using gpu-based texture space importance sampling. Comput. Graph. Forum 27(2), 517–526 (2008) CrossRefGoogle Scholar
  3. 3.
    Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Proceedings of the 14th Eurographics workshop on Rendering, EGRW’03, pp. 197–201. Eurographics Association, Goslar (2003) Google Scholar
  4. 4.
    Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D’05, New York, NY, USA, pp. 203–231. ACM Press, New York (2005) CrossRefGoogle Scholar
  5. 5.
    Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, I3D’06, pp. 93–100. ACM Press, New York (2006) CrossRefGoogle Scholar
  6. 6.
    d’Eon, E., Luebke, D.P., Enderton, E.: Efficient rendering of human skin. In: Rendering Techniques, pp. 147–157 (2007) Google Scholar
  7. 7.
    Haber, T., Mertens, T., Bekaert, P., Van Reeth, F.: A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects. In: Proceedings of Graphics Interface 2005, GI’05, pp. 79–86 (2005) Google Scholar
  8. 8.
    Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23, 120–142 (2004) CrossRefGoogle Scholar
  9. 9.
    Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.-P.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics 2002, pp. 214–224 (2002) Google Scholar
  10. 10.
    Mertens, T., Kautz, J., Bekaert, P., Seidelz, H.-P., Van Reeth, F.: Interactive rendering of translucent deformable objects. In: Proceedings of the 14th Eurographics Workshop on Rendering, EGRW’03, pp. 130–140. Eurographics Association, Goslar (2003) Google Scholar
  11. 11.
    Nichols, G., Wyman, C.: Multiresolution splatting for indirect illumination. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D’09, pp. 83–90. ACM Press, New York (2009) CrossRefGoogle Scholar
  12. 12.
    Nichols, G., Wyman, C.: Interactive indirect illumination using adaptive multiresolution splatting. IEEE Trans. Vis. Comput. Graph. 16(5), 729–741 (2010) CrossRefGoogle Scholar
  13. 13.
    Nichols, G., Shopf, J., Wyman, C.: Hierarchical image-space radiosity for interactive global illumination. Comput. Graph. Forum 28(4), 1141–1149 (2009) CrossRefGoogle Scholar
  14. 14.
    Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical considerations and nomenclature for reflectance. In: Radiometry, pp. 94–145. Jones and Bartlett, Boston (1992) Google Scholar
  15. 15.
    Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH’06, pp. 746–753. ACM Press, New York (2006) CrossRefGoogle Scholar
  16. 16.
    Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space subsurface scattering for interactive rendering of deformable translucent objects. IEEE Comput. Graph. Appl. 29, 66–78 (2009) CrossRefGoogle Scholar
  17. 17.
    Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH’09, pp. 31:1–31:10. ACM Press, New York (2009) Google Scholar
  18. 18.
    Stam, J.: Multiple scattering as a diffusion process. In: Eurographics Rendering Workshop, pp. 41–50 (1995) Google Scholar
  19. 19.
    Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. 24, 1202–1207 (2005) CrossRefGoogle Scholar
  20. 20.
    Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D.P., Chen, Q., Hua, W., Peng, Q., Bao, H.: Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24(7–9), 565–575 (2008) CrossRefGoogle Scholar
  21. 21.
    Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27(9), 1–18 (2008) Google Scholar
  22. 22.
    Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. Comput. Graph. Forum 29, 497–506 (2010) CrossRefGoogle Scholar
  23. 23.
    Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 511–518. ACM Press, New York (2001) CrossRefGoogle Scholar
  24. 24.
    Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.-M.: Real-time homogenous translucent material editing. Comput. Graph. Forum 26(3), 545–552 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Guojun Chen
    • 1
  • Pieter Peers
    • 2
  • Jiawan Zhang
    • 1
  • Xin Tong
    • 1
    • 3
  1. 1.Tianjin UniversityTianjinP.R. China
  2. 2.College of William & MaryWilliamsburgUSA
  3. 3.Microsoft Research AsiaBeijingP.R. China

Personalised recommendations