Advertisement

The Visual Computer

, Volume 28, Issue 6–8, pp 603–612 | Cite as

Mixing Monte Carlo and progressive rendering for improved global illumination

  • Ian C. DoidgeEmail author
  • Mark W. Jones
  • Benjamin Mora
Original Article

Abstract

In this paper, we seek to eliminate the noise caused by caustic paths during progressive Monte Carlo path tracing. We employ a filtering strategy over path space, handling each subspace using specialized derivations of path tracing and progressive photon mapping. Evaluating diffuse paths with path tracing allows the use of sample stratification over both pixels and the image as a whole, whilst sharp detailed caustics are produced using progressive photon mapping. This is an efficient, low noise progressive algorithm with vanishing bias combining the advantages of both Monte Carlo methods, and particle tracing.

Keywords

Global illumination Monte Carlo integration Path tracing Photon mapping 

Notes

Acknowledgements

The work presented in this paper was funded by an EPSRC doctoral training grant and also EPSRC grant number EP/I031243/1. We would like to be notified about any adoption of this method into ray-tracing software since our funding council seeks to record the impact of its funded research.

Supplementary material

371_2012_703_MOESM1_ESM.pdf (12.3 mb)
Mixing Monte Carlo and Progressive Rendering for Improved Global Illumination (PDF 12.3 MB)

References

  1. 1.
    Budge, B.C., Anderson, J.C., Joy, K.I.: Caustic forecasting: unbiased estimation of caustic lighting for global illumination. Comput. Graph. Forum 27(7), 1963–1970 (2008) CrossRefGoogle Scholar
  2. 2.
    Chen, J., Wang, B., Yong, J.H.: Improved stochastic progressive photon mapping with metropolis sampling. Comput. Graph. Forum 30(4), 1205–1213 (2011) CrossRefGoogle Scholar
  3. 3.
    Cline, D., Talbot, J., Egbert, P.: Energy redistribution path tracing. ACM Trans. Graph. 24(3), 1186–1195 (2005) CrossRefGoogle Scholar
  4. 4.
    Dammertz, H., Keller, A., Lensch, H.P.A.: Progressive point-light-based global illumination. Comput. Graph. Forum 29(8), 2504–2515 (2010) CrossRefGoogle Scholar
  5. 5.
    DeCoro, C., Weyrich, T., Rusinkiewicz, S.: Density-based outlier rejection in Monte Carlo rendering. Comput. Graph. Forum 29(7), 2119–2125 (2010) CrossRefGoogle Scholar
  6. 6.
    Donikian, M., Walter, B., Bala, K., Fernandez, S., Greenberg, D.P.: Accurate direct illumination using iterative adaptive sampling. IEEE Trans. Vis. Comput. Graph. 12, 353–364 (2006) CrossRefGoogle Scholar
  7. 7.
    Dutré, P., Lafortune, E.P., Willems, Y.: Monte Carlo light tracing with direct computation of pixel intensities. In: 3rd International Conference on Computational Graphics and Visualisation Techniques, pp. 128–137 (1993) Google Scholar
  8. 8.
    Fan, S., Chenney, S., Lai, Y.C.: Metropolis photon sampling with optional user guidance. In: Proceedings of the 16th Eurographics Symposium on Rendering, pp. 127–138. Eurographics Association, Aire-la-Ville (2005) Google Scholar
  9. 9.
    Hachisuka, T., Jensen, H.W.: Stochastic progressive photon mapping. ACM Trans. Graph. 28(5), 141:1–141:8 (2009) CrossRefGoogle Scholar
  10. 10.
    Hachisuka, T., Jensen, H.W.: Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30(5), 114:1–114:11 (2011) CrossRefGoogle Scholar
  11. 11.
    Hachisuka, T., Ogaki, S., Jensen, H.W.: Progressive photon mapping. ACM Trans. Graph. 27(5), 130:1–130:8 (2008) CrossRefGoogle Scholar
  12. 12.
    Heckbert, P.S.: Adaptive radiosity textures for bidirectional ray tracing. In: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’90, pp. 145–154. ACM, New York (1990) CrossRefGoogle Scholar
  13. 13.
    Jensen, H.W.: Global illumination using photon maps. In: Proceedings of the Eurographics Workshop on Rendering Techniques’96, pp. 21–30. Springer, London (1996) Google Scholar
  14. 14.
    Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’86, pp. 143–150. ACM, New York (1986) CrossRefGoogle Scholar
  15. 15.
    Kollig, T., Keller, A.: Illumination in the presence of weak singularities. In: Monte Carlo and Quasi-Monte Carlo Methods (2004) Google Scholar
  16. 16.
    Lafortune, E.P., Willems, Y.D.: Bi-directional path tracing. In: Proceedings of the International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS’93), pp. 145–153 (1993) Google Scholar
  17. 17.
    Spencer, B., Jones, M.W.: Hierarchical photon mapping. IEEE Trans. Vis. Comput. Graph. 15(1), 49–61 (2009) CrossRefGoogle Scholar
  18. 18.
    Spencer, B., Jones, M.W.: Into the blue: better caustics through photon relaxation. Comput. Graph. Forum, 28(2), 319–328 (2009) CrossRefGoogle Scholar
  19. 19.
    Veach, E., Guibas, L.: Bidirectional estimators for light transport. In: Proceedings of the Eurographics Workshop on Rendering, pp. 147–162. Eurographics Association, Aire-la-Ville (1994) Google Scholar
  20. 20.
    Veach, E., Guibas, L.J.: Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’95, pp. 419–428. ACM, New York (1995) CrossRefGoogle Scholar
  21. 21.
    Veach, E., Guibas, L.J.: Metropolis light transport. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’97, pp. 65–76. ACM, New York (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Computer ScienceSwansea UniversitySwanseaUK

Personalised recommendations