The Visual Computer

, Volume 28, Issue 6–8, pp 869–875 | Cite as

Procedural models for cartoon cracks and fractures animations

  • Jing Liao
  • Jinhui YuEmail author
Original Article


We present an approach for animating cracks and fractures in cartoon style. In our method we take a 2D hand-drawn object as input and then construct a 2.5D model of the object in order to approximate the object volume. Next, we generate the Voronoi textures on the 2.5D object model for visual abstraction of cartoon cracks. Further, cracking gaps on the Voronoi textures are widened progressively until Voronoi cells split apart and finally fall onto ground according to simplified physical rules. With minimum user intervention, our model is able to generate cartoon cracks and fractures animations procedurally, as demonstrated by examples given in the paper.


Procedural modeling Cracks and fractures Non-photorealistic rendering Cartoon animation 



This work is supported by the State Key Program of National Natural Science Foundation of China (No. 60933007), the Key Technologies R&D Program of China (No. 2007BAH11B02).

Supplementary material

(MPG 53.3 MB)


  1. 1.
    Skjeltorp, A.T., Meakin, P.: Fracture in microsphere monolayers studied by experiment and computer simulation. Nature 335, 424–426 (1988) CrossRefGoogle Scholar
  2. 2.
    Federl, P., Prusinkiewicz, P.: A texture model for cracked surfaces, with an application to tree bark. In: Proceedings of the 7th Western Computer Graphics Symposium (1996) Google Scholar
  3. 3.
    Hirota, K., Tanoue, Y., Kaneko, T.: Generation of crack patterns with a physical model. Vis. Comput. 14(3), 126–137 (1998) CrossRefGoogle Scholar
  4. 4.
    Hirota, K., Tanoue, Y., Kaneko, T.: Simulation of three-dimensional cracks. Vis. Comput. 16, 371–378 (2000) zbMATHCrossRefGoogle Scholar
  5. 5.
    Gobron, S., Chiba, N.: Crack pattern simulation based on 3d surface cellular automaton. In: Proceedings of the International Conference on Computer Graphics (2000) Google Scholar
  6. 6.
    Gobron, S., Chiba, N.: Simulation of peeling using 3d-surface cellular automata. In: Proceedings of the 9th Pacific Conference on Computer Graphics and Applications (2001) Google Scholar
  7. 7.
    Paquette, E., Poulin, P., Drettakis, G.: The simulation of paint cracking and peeling. In: Proceedings of Graphics Interface (2002) Google Scholar
  8. 8.
    Federl, P., Prusinkiewicz, P.: Modelling fracture formation in bi-layered materials, with applications to tree bark and drying mud. In: Proceedings of the 13th Western Computer Graphics Symposium (2002) Google Scholar
  9. 9.
    Federl, P., Prusinkiewicz, P.: Finite element model of fracture formation on growing surfaces. In: Lecture Notes in Computer Science, vol. 3037, pp. 138–145 (2004) Google Scholar
  10. 10.
    Iben, H., O’Brien, J.: Generating surface crack patterns. Graph. Models 91, 198–208 (2009) CrossRefGoogle Scholar
  11. 11.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. Comput. Graph. 21, 205–214 (1987) CrossRefGoogle Scholar
  12. 12.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Comput. Graph. 22, 269–278 (1988) CrossRefGoogle Scholar
  13. 13.
    Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Vis. Comput. 7(4), 210–219 (1991) CrossRefGoogle Scholar
  14. 14.
    Mazarek, O., Martins, C., Amanatides, J.: Animating exploding objects. In: Proceedings of the Graphics Interface, pp. 211–218 (1999) Google Scholar
  15. 15.
    Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of Graphics Interface, pp. 193–202 (1999) Google Scholar
  16. 16.
    O’Brien, J., Hodgins, J.: Graphical modeling and animation of brittle fracture. Comput. Graph. 33, 137–146 (1999) Google Scholar
  17. 17.
    O’Brien, J., Bargteil, A., Hodgins, J.: Graphical Modeling and Animation of Ductile Fracture. In: Proceedings of ACM SIGGRAPH (2002) Google Scholar
  18. 18.
    Muller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface (2004) Google Scholar
  19. 19.
    Muller, M., Teschner, M., Gross, M.: Physically-based simulation of objects represented by surface meshes. In: Proceedings of the Computer Graphics International (2004) Google Scholar
  20. 20.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004) CrossRefGoogle Scholar
  21. 21.
    Gingold, Y., Secord, A., Han, J.Y., Grinspun, E., Zorin, D.: A discrete model for inelastic deformation of thin shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2004) Google Scholar
  22. 22.
    Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: Proceedings of the ACM SIGGRAPH (2005) Google Scholar
  23. 23.
    Worley, S.: A cellular texture basis function. In: Proceedings of SIGGRAPH, pp. 291–294 (1996) Google Scholar
  24. 24.
    Raghavachary, S.: Fracture generation on polygonal meshes using Voronoi polygons. In: Proceedings of SIGGRAPH (Sketches), p. 187 (2002) Google Scholar
  25. 25.
    Mould, D.: Image-guided fracture. In: Proceedings of Graphics Interface (2005) Google Scholar
  26. 26.
    Wyvill, B., van Overveld, K., Carpendale, S.: Rendering cracks in batik. In: Proceedings of the 3rd International Symposium on Nonphotorealistic Animation and Rendering (2004) Google Scholar
  27. 27.
    Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings of International Conference on Shape Modeling and Applications (2004) Google Scholar
  28. 28.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991) CrossRefGoogle Scholar
  29. 29.
    Hoff, K.E., Culver, T., Keyser, J., Lin, M., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceeding of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–286 (1999) Google Scholar
  30. 30.
    Lischinski, D.: Incremental Delaunay triangulation. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 47–59. Academic Press, Boston (1994) Google Scholar
  31. 31.
    Nvdia: PhysX. (2012). Accessed 22 March 2012

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations