Advertisement

The Visual Computer

, Volume 28, Issue 6–8, pp 669–677 | Cite as

Unified spray, foam and air bubbles for particle-based fluids

  • Markus IhmsenEmail author
  • Nadir Akinci
  • Gizem Akinci
  • Matthias Teschner
Original Article

Abstract

We present a new model for diffuse material, i.e. water–air mixtures, that can be combined with particle-based fluids. Diffuse material is uniformly represented with particles which are classified into spray, foam and air bubbles. Physically motivated rules are employed to generate, advect and dissipate diffuse material. The approach is realized as a post-processing step which enables efficient processing and versatile handling. As interparticle forces and the influence of diffuse material onto the fluid are neglected, large numbers of diffuse particles are efficiently processed to realize highly detailed small-scale effects. The presented results show that our approach can significantly improve the visual realism of large-scale fluid simulations.

Keywords

Animation Fluids Particles 

Notes

Acknowledgements

This project is supported by the German Research Foundation (DFG) under contract numbers SFB/TR-8 and TE 632/1-1. We also thank NVIDIA ARC GmbH for supporting this work. We are very grateful to Philipp Vath for his valuable ideas and his contribution to this project.

Supplementary material

(MP4 17.8 MB)

References

  1. 1.
    Adams, B., Lenaerts, T., Dutre, P.: Particle splatting: interactive rendering of particle-based simulation data. Tech. rep. CW 453, Katholieke Uni, Leuven (2006) Google Scholar
  2. 2.
    Bagar, F., Scherzer, D., Wimmer, M.: A layered particle-based fluid model for real-time rendering of water. Comput. Graph. Forum, Proceedings EGSR 2010 29(4), 1383–1389 (2010) CrossRefGoogle Scholar
  3. 3.
    Bredow, R., Schaub, D., Kramer, D., Hausman, M., Dimian, D., Duguid, R.S.: Surf’s up: the making of an animated documentary. In: SIGGRAPH 2007 Courses, pp. 1–123 (2007) Google Scholar
  4. 4.
    Chentanez, N., Müller, M.: Real-time simulation of large bodies of water with small scale details. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 197–206 (2010) Google Scholar
  5. 5.
    Chentanez, N., Müller, M.: Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 82:1–82:10 (2011) CrossRefGoogle Scholar
  6. 6.
    Fangmeier, S., Anderson, J., Zargarpour, H., Smythe, D., Alexander, T.: Industrial light + magic: the making of the perfect storm. In: SIGGRAPH Panel (2000) Google Scholar
  7. 7.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proc. SIGGRAPH 2001, pp. 23–30 (2001) CrossRefGoogle Scholar
  8. 8.
    Geiger, W., Leo, M., Rasmussen, N., Losasso, F., Fedkiw, R.: So real it’ll make you wet. In: SIGGRAPH 2006 Sketches (2006) Google Scholar
  9. 9.
    Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 287–296 (2004) CrossRefGoogle Scholar
  10. 10.
    Guendelman, E., Selle, A., Losasso, F., Fedkiw, R.: Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 973–981 (2005) CrossRefGoogle Scholar
  11. 11.
    Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27, 48:1–48:4 (2008) CrossRefGoogle Scholar
  12. 12.
    Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30(1), 99–112 (2011) CrossRefGoogle Scholar
  13. 13.
    Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive time-stepping for PCISPH. In: Proc. VRIPHYS, pp. 79–88 (2010) Google Scholar
  14. 14.
    Ihmsen, M., Bader, J., Akinci, G., Teschner, M.: Animation of air bubbles with SPH. In: Computer Graphics Theory and Applications GRAPP, pp. 225–234 (2011) Google Scholar
  15. 15.
    Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 805–811 (2005) CrossRefGoogle Scholar
  16. 16.
    Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 335–344 (2006) Google Scholar
  17. 17.
    Klingner, B., Feldman, B., Chentanez, N., O’Brien, J.: Fluid animation with dynamic meshes. ACM Trans. Graph. 25(3), 820–825 (2006) CrossRefGoogle Scholar
  18. 18.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 457–462 (2004) CrossRefGoogle Scholar
  19. 19.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008) CrossRefGoogle Scholar
  20. 20.
    Mihalef, V., Metaxas, D., Sussman, M.: Textured liquids based on the marker level set. Comput. Graph. Forum 26, 457–466 (2007) CrossRefGoogle Scholar
  21. 21.
    Mihalef, V., Metaxas, D.N., Sussman, M.: Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum 28(2), 229–238 (2009) CrossRefGoogle Scholar
  22. 22.
    Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992) CrossRefGoogle Scholar
  23. 23.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003) Google Scholar
  24. 24.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005) CrossRefGoogle Scholar
  25. 25.
    Next Limit Technologies: Realflow 2012, Hybrido. White Paper (2011) Google Scholar
  26. 26.
    Raveendran, K., Wojtan, C., Turk, G.: Hybrid smoothed particle hydrodynamics. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–42 (2011) Google Scholar
  27. 27.
    Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (1999) CrossRefGoogle Scholar
  28. 28.
    Solenthaler, B., Gross, M.: Two-scale particle simulation. ACM Trans. Graph. 30(4), 72:1–72:8 (2011) CrossRefGoogle Scholar
  29. 29.
    Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 40:1–40:6 (2009) CrossRefGoogle Scholar
  30. 30.
    Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003) CrossRefGoogle Scholar
  31. 31.
    Thürey, N., Müller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: Proc. of the Pacific Conference on Computer Graphics and Applications, pp. 39–46 (2007) Google Scholar
  32. 32.
    Thürey, N., Rüde, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulations. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 157–164 (2006) Google Scholar
  33. 33.
    Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24, 965–972 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Markus Ihmsen
    • 1
    Email author
  • Nadir Akinci
    • 1
  • Gizem Akinci
    • 1
  • Matthias Teschner
    • 1
  1. 1.University of FreiburgFreiburgGermany

Personalised recommendations