The Visual Computer

, Volume 28, Issue 6–8, pp 765–774 | Cite as

Physical simulation of wet clothing for virtual humans

  • Yujun Chen
  • Nadia Magnenat Thalmann
  • Brian Foster Allen
Original Article

Abstract

We present a technique that simulates wet garments for virtual humans with realistic folds and wrinkles. Our approach combines three new models to allow realistic simulation of wet garments: (1) a simplified saturation model that modifies the masses, (2) a nonlinear friction model derived from previously reported, real-world measurements, and (3) a wrinkle model based on imperfection sensitivity theory. In contrast to previous approaches to wet cloth, the proposed models are supported by the experimental results reported in the textile literature with parameters varying over the course of the simulation. As a result, the wet garment motions simulated by our method are comparable to that of real wet garments. Our approach recognizes the special, practical importance of contact models with human skin and provides a specific skin-cloth friction solution. We evaluate our approach by draping a rotating sphere and simulating a typical garment on a virtual human in the rain. Both of these examples are typical scenarios within computer graphics research.

Keywords

Computer animation Wet garment simulation Nonlinear friction Imperfection sensitivity model 

Notes

Acknowledgements

We would like to thank Robert Ronan Teoxon RAFON for providing the 3D geometry model of the garment and the body, Dr. Flavien JACKIE PICON, and Mohamed ELGENDI for the useful discussions.

References

  1. 1.
    Ozgen, O., Kallmann, M., Ramirez, L., Coimbra, C.F.M.: Underwater cloth simulation with fractional derivatives. ACM Trans. Graph. 29, 1–9 Google Scholar
  2. 2.
    Huber, M., Pabst, S., Strasser, W.: Wet cloth simulation. In: ACM SIGGRAPH 2011 Posters, p. 10:1 (2011) Google Scholar
  3. 3.
    Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27, 49 (2008) CrossRefGoogle Scholar
  4. 4.
    van der Heijden, A.M.A.: W.T. Koiter’s Elastic Stability of Solids and Structures, 1st edn. Cambridge University Press, Cambridge (2008) Google Scholar
  5. 5.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH’87, pp. 205–214 (1987) Google Scholar
  6. 6.
    Weil, J.: The synthesis of cloth objects. In: SIGGRAPH’86, pp. 49–54 (1986) Google Scholar
  7. 7.
    Provot, X.: Collision and self-collision handling in cloth model dedicated to design garments. In: Proceedings of Computer Animation and Simulation 97, pp. 177–189 (1997) CrossRefGoogle Scholar
  8. 8.
    Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, pp. 365–372 (1994) CrossRefGoogle Scholar
  9. 9.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’98, pp. 43–54. ACM, New York (1998) CrossRefGoogle Scholar
  10. 10.
    Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. 25(3), 1154–1159 (2006) CrossRefGoogle Scholar
  11. 11.
    Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 1–9 (2008) CrossRefGoogle Scholar
  12. 12.
    Huang, C., Sun, H., Liu, S., Li, P.: Interactive soft-fabrics watering simulation on GPU. Comput. Animat. Virtual Worlds 22(2–3), 99106 (2011) Google Scholar
  13. 13.
    Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’02, pp. 594–603 (2002) CrossRefGoogle Scholar
  14. 14.
    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH’05, p. 3 (2005) CrossRefGoogle Scholar
  15. 15.
    Pabst, S., Thomaszewski, B., Strasser, W.: Anisotropic friction for deformable surfaces and solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’09, pp. 149–154 (2009) CrossRefGoogle Scholar
  16. 16.
    Provot, X.: Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior (1995) Google Scholar
  17. 17.
    Bonanni, U., Luible, C., Magnenat-Thalmann, N., Mkinen, M., Volino, P., Davy, P., Meinander, H.: From measured physical parameters to the haptic feeling of fabric. Vis. Comput. 23(2), 133–142 (2007) CrossRefGoogle Scholar
  18. 18.
    Charfi, H., Gagalowicz, A., Brun, R.: Viscosity damping parameters of fabric related to a non-linear textile model. Tex. Res. J. 76, 787–798 (2006) CrossRefGoogle Scholar
  19. 19.
    Choi, K.-J., Ko, H.-S.: Stable but responsive cloth. In: SIGGRAPH’02, p. 1 (2002) Google Scholar
  20. 20.
    Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., Cani, M.-P.: Virtual garments: a fully geometric approach for clothing design. Comput. Graph. Forum (Proc. Eurographics’06) 25(3), 625–634 (2006) CrossRefGoogle Scholar
  21. 21.
    Taibi, E.H., Hammouche, A., Kifani, A.: Model of the tensile stress-strain behavior of fabrics. Tex. Res. J. 71(7), 582–586 (2001) CrossRefGoogle Scholar
  22. 22.
    Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’05, pp. 237–244 (2005) CrossRefGoogle Scholar
  23. 23.
    Kothari, V., Das, B., Das, A.: Moisture flow through blended fabrics effect of hydrophilicity. J. Eng. Fibers Fabr. 4, 19–28 (2009) Google Scholar
  24. 24.
    Li, Y., Plante, A.M., Holcombe, B.V.: Fiber hygroscopicity and perceptions of dampness part II: physical mechanisms. Tex. Res. J. 65, 316–324 (1995) CrossRefGoogle Scholar
  25. 25.
    Luo, W.-d., Cui, W.-g., Xiang, X-Z.: The study on the hydroscopicity of fa. J. Wuhan Univ. Sci. Eng. 17(1), 5–9 (2004) Google Scholar
  26. 26.
    Kenins, P.: Influence of fiber-type and moisture on measured fabric-to-skin friction. Tex. Res. J. 64(12), 722–728 (1994) CrossRefGoogle Scholar
  27. 27.
    Kawabata, S.: The Standardization and Analysis of Hand Evaluation. Textile Machinery Society of Japan (1980) Google Scholar
  28. 28.
    Abdelmoula, R., Leger, A.: Singular perturbation analysis of the buckling of circular cylindrical shells. Eur. J. Mech. 1, 1–36 (2007) Google Scholar
  29. 29.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH’07, p. 49 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yujun Chen
    • 1
    • 2
  • Nadia Magnenat Thalmann
    • 2
    • 3
  • Brian Foster Allen
    • 2
  1. 1.Peking UniversityBeijingChina
  2. 2.Nanyang Technological UniversitySingaporeSingapore
  3. 3.University of GenevaGenevaSwitzerland

Personalised recommendations