The Visual Computer

, Volume 29, Issue 1, pp 69–83 | Cite as

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees

  • Prashant Goswami
  • Fatih Erol
  • Rahul Mukhi
  • Renato Pajarola
  • Enrico Gobbetti
Original Article

Abstract

We present an efficient technique for out-of-core multi-resolution construction and high quality interactive visualization of massive point clouds. Our approach introduces a novel hierarchical level of detail (LOD) organization based on multi-way kd-trees, which simplifies memory management and allows control over the LOD-tree height. The LOD tree, constructed bottom up using a fast high-quality point simplification method, is fully balanced and contains all uniformly sized nodes. To this end, we introduce and analyze three efficient point simplification approaches that yield a desired number of high-quality output points. For constant rendering performance, we propose an efficient rendering-on-a-budget method with asynchronous data loading, which delivers fully continuous high quality rendering through LOD geo-morphing and deferred blending. Our algorithm is incorporated in a full end-to-end rendering system, which supports both local rendering and cluster-parallel distributed rendering. The method is evaluated on complex models made of hundreds of millions of point samples.

Keywords

Point-based rendering Level-of-detail Multi-way kd-tree Entropy-based reduction k-clustering Parallel rendering Geo-morphing 

Notes

Acknowledgements

We would like to thank and acknowledge the Stanford 3D Scanning Repository and Digital Michelangelo projects as well as Roberto Scopigno, for the Pisa Cathedral model, for providing the 3D geometric test datasets used in this paper. This work was supported in parts by the Swiss Commission for Technology and Innovation (KTI/CTI) under Grant 9394.2 PFES-ES.

Supplementary material

371_2012_675_MOESM1_ESM.mov (74.5 mb)
(MOV 74.5 MB)

References

  1. 1.
    Goswami, P., Zhang, Y., Pajarola, R., Gobbetti, E.: High quality interactive rendering of massive point models using multi-way kd-trees. In: Proceedings Pacific Graphics Poster Papers, pp. 93–100 (2010) Google Scholar
  2. 2.
    Levoy, M., Whitted, T.: The use of points as display primitives. TR 85-022, Technical Report, Department of Computer Science, University of North Carolina at Chapel Hill (1985) Google Scholar
  3. 3.
    Grossman, J.P., Dally, W.J.: Point sample rendering. In: Proceedings Eurographics Workshop on Rendering, pp. 181–192 (1998) Google Scholar
  4. 4.
    Pfister, H., Gross, M.: Point-based computer graphics. IEEE Comput. Graph. Appl. 24(4), 22–23 (2004) CrossRefGoogle Scholar
  5. 5.
    Gross, M.H.: Getting to the point…? IEEE Comput. Graph. Appl. 26(5), 96–99 (2006) CrossRefGoogle Scholar
  6. 6.
    Gross, M.H., Pfister, H.: Point-Based Graphics. Morgan Kaufmann, San Mateo (2007) Google Scholar
  7. 7.
    Sainz, M., Pajarola, R.: Point-based rendering techniques. Comput. Graph. 28(6), 869–879 (2004) CrossRefGoogle Scholar
  8. 8.
    Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004) CrossRefGoogle Scholar
  9. 9.
    Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: Proceedings ACM SIGGRAPH, pp. 343–352 (2000) Google Scholar
  10. 10.
    Grottel, S., Reina, G., Dachsbacher, C., Ertl, T.: Coherent culling and shading for large molecular dynamics visualization. Comput. Graph. Forum 29(3), 953–962 (2010) (Proceedings of EUROVIS) CrossRefGoogle Scholar
  11. 11.
    Dachsbacher, C., Vogelgsang, C., Stamminger, M.: Sequential point trees. ACM Trans. Graph. 22(3) (2003). Proceedings ACM SIGGRAPH Google Scholar
  12. 12.
    Pajarola, R., Sainz, M., Lario, R.: XSplat: External memory multiresolution point visualization. In: Proceedings IASTED International Conference on Visualization, Imaging and Image Processing, pp. 628–633 (2005) Google Scholar
  13. 13.
    Wimmer, M., Scheiblauer, C.: Instant points: Fast rendering of unprocessed point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 129–136 (2006) Google Scholar
  14. 14.
    Gobbetti, E., Marton, F.: Layered point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 113–120 (2004) Google Scholar
  15. 15.
    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B., Staneker, D., Schilling, A.: Interactive editing of large point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 37–46 (2007) Google Scholar
  16. 16.
    Bettio, F., Gobbetti, E., Martio, F., Tinti, A., Merella, E., Combet, R.: A point-based system for local and remote exploration of dense 3D scanned models. In: Proceedings Eurographics Symposium on Virtual Reality, Archaeology and Cultural Heritage, pp. 25–32 (2009) Google Scholar
  17. 17.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings IEEE Visualization, pp. 163–170 (2002) Google Scholar
  18. 18.
    Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR Juggler: A virtual platform for virtual reality application development. In: Proceedings IEEE Virtual Reality, pp. 89–96 (2001) CrossRefGoogle Scholar
  19. 19.
    Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D., Klosowski, J.T.: Chromium: A stream-processing framework for interactive rendering on clusters. ACM Trans. Graph. 21(3) (2002). Proceedings ACM SIGGRAPH Google Scholar
  20. 20.
    Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: A scalable parallel rendering framework. IEEE Trans. Vis. Comput. Graph. 15(3), 436–452 (2009) CrossRefGoogle Scholar
  21. 21.
    Goswami, P., Makhinya, M., Bösch, J., Pajarola, R.: Scalable parallel out-of-core terrain rendering. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 63–71 (2010) Google Scholar
  22. 22.
    Corea, W.T., Klosowski, J.T., Silva, C.T.: Out-of-core sort-first parallel rendering for cluster-based tiled displays. In: Fourth Eurographics Workshop on Parallel Graphics and Visualization, pp. 63–71 (2002) Google Scholar
  23. 23.
    Hubo, E., Bekaert, P.: A data distribution strategy for parallel point-based rendering. In: Proceedings International Conference on Computer Graphics, Visualization and Computer Vision, pp. 1–8 (2005) Google Scholar
  24. 24.
    Zhang, Y., Pajarola, R.: Deferred blending: Image composition for single-pass point rendering. Comput. Graph. 31(2), 175–189 (2007) CrossRefGoogle Scholar
  25. 25.
    Corrêa, W.T., Fleishman, S., Silva, C.T.: Towards point-based acquisition and rendering of large real-world environments. In: Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing, p. 59 (2002) CrossRefGoogle Scholar
  26. 26.
    Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14(4), 23–32 (1994) CrossRefGoogle Scholar
  27. 27.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967) Google Scholar
  28. 28.
    Dasgupta, S.: The hardness of k-means clustering. CS2008-0916, Technical Report, Department of Computer Science and Engineering University of California, San Diego (2008) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Prashant Goswami
    • 1
  • Fatih Erol
    • 1
  • Rahul Mukhi
    • 3
  • Renato Pajarola
    • 1
  • Enrico Gobbetti
    • 2
  1. 1.Visualization and MultiMedia LabUniversity of ZurichZurichSwitzerland
  2. 2.CRS4Pula (CA)Italy
  3. 3.Department of InformaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations