The Visual Computer

, Volume 29, Issue 1, pp 69–83 | Cite as

An efficient multi-resolution framework for high quality interactive rendering of massive point clouds using multi-way kd-trees

  • Prashant Goswami
  • Fatih Erol
  • Rahul Mukhi
  • Renato Pajarola
  • Enrico Gobbetti
Original Article

Abstract

We present an efficient technique for out-of-core multi-resolution construction and high quality interactive visualization of massive point clouds. Our approach introduces a novel hierarchical level of detail (LOD) organization based on multi-way kd-trees, which simplifies memory management and allows control over the LOD-tree height. The LOD tree, constructed bottom up using a fast high-quality point simplification method, is fully balanced and contains all uniformly sized nodes. To this end, we introduce and analyze three efficient point simplification approaches that yield a desired number of high-quality output points. For constant rendering performance, we propose an efficient rendering-on-a-budget method with asynchronous data loading, which delivers fully continuous high quality rendering through LOD geo-morphing and deferred blending. Our algorithm is incorporated in a full end-to-end rendering system, which supports both local rendering and cluster-parallel distributed rendering. The method is evaluated on complex models made of hundreds of millions of point samples.

Keywords

Point-based rendering Level-of-detail Multi-way kd-tree Entropy-based reduction k-clustering Parallel rendering Geo-morphing 

Supplementary material

371_2012_675_MOESM1_ESM.mov (74.5 mb)
(MOV 74.5 MB)

References

  1. 1.
    Goswami, P., Zhang, Y., Pajarola, R., Gobbetti, E.: High quality interactive rendering of massive point models using multi-way kd-trees. In: Proceedings Pacific Graphics Poster Papers, pp. 93–100 (2010) Google Scholar
  2. 2.
    Levoy, M., Whitted, T.: The use of points as display primitives. TR 85-022, Technical Report, Department of Computer Science, University of North Carolina at Chapel Hill (1985) Google Scholar
  3. 3.
    Grossman, J.P., Dally, W.J.: Point sample rendering. In: Proceedings Eurographics Workshop on Rendering, pp. 181–192 (1998) Google Scholar
  4. 4.
    Pfister, H., Gross, M.: Point-based computer graphics. IEEE Comput. Graph. Appl. 24(4), 22–23 (2004) CrossRefGoogle Scholar
  5. 5.
    Gross, M.H.: Getting to the point…? IEEE Comput. Graph. Appl. 26(5), 96–99 (2006) CrossRefGoogle Scholar
  6. 6.
    Gross, M.H., Pfister, H.: Point-Based Graphics. Morgan Kaufmann, San Mateo (2007) Google Scholar
  7. 7.
    Sainz, M., Pajarola, R.: Point-based rendering techniques. Comput. Graph. 28(6), 869–879 (2004) CrossRefGoogle Scholar
  8. 8.
    Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Comput. Graph. 28(6), 801–814 (2004) CrossRefGoogle Scholar
  9. 9.
    Rusinkiewicz, S., Levoy, M.: QSplat: A multiresolution point rendering system for large meshes. In: Proceedings ACM SIGGRAPH, pp. 343–352 (2000) Google Scholar
  10. 10.
    Grottel, S., Reina, G., Dachsbacher, C., Ertl, T.: Coherent culling and shading for large molecular dynamics visualization. Comput. Graph. Forum 29(3), 953–962 (2010) (Proceedings of EUROVIS) CrossRefGoogle Scholar
  11. 11.
    Dachsbacher, C., Vogelgsang, C., Stamminger, M.: Sequential point trees. ACM Trans. Graph. 22(3) (2003). Proceedings ACM SIGGRAPH Google Scholar
  12. 12.
    Pajarola, R., Sainz, M., Lario, R.: XSplat: External memory multiresolution point visualization. In: Proceedings IASTED International Conference on Visualization, Imaging and Image Processing, pp. 628–633 (2005) Google Scholar
  13. 13.
    Wimmer, M., Scheiblauer, C.: Instant points: Fast rendering of unprocessed point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 129–136 (2006) Google Scholar
  14. 14.
    Gobbetti, E., Marton, F.: Layered point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 113–120 (2004) Google Scholar
  15. 15.
    Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B., Staneker, D., Schilling, A.: Interactive editing of large point clouds. In: Proceedings Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pp. 37–46 (2007) Google Scholar
  16. 16.
    Bettio, F., Gobbetti, E., Martio, F., Tinti, A., Merella, E., Combet, R.: A point-based system for local and remote exploration of dense 3D scanned models. In: Proceedings Eurographics Symposium on Virtual Reality, Archaeology and Cultural Heritage, pp. 25–32 (2009) Google Scholar
  17. 17.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplification of point-sampled surfaces. In: Proceedings IEEE Visualization, pp. 163–170 (2002) Google Scholar
  18. 18.
    Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR Juggler: A virtual platform for virtual reality application development. In: Proceedings IEEE Virtual Reality, pp. 89–96 (2001) CrossRefGoogle Scholar
  19. 19.
    Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D., Klosowski, J.T.: Chromium: A stream-processing framework for interactive rendering on clusters. ACM Trans. Graph. 21(3) (2002). Proceedings ACM SIGGRAPH Google Scholar
  20. 20.
    Eilemann, S., Makhinya, M., Pajarola, R.: Equalizer: A scalable parallel rendering framework. IEEE Trans. Vis. Comput. Graph. 15(3), 436–452 (2009) CrossRefGoogle Scholar
  21. 21.
    Goswami, P., Makhinya, M., Bösch, J., Pajarola, R.: Scalable parallel out-of-core terrain rendering. In: Eurographics Symposium on Parallel Graphics and Visualization, pp. 63–71 (2010) Google Scholar
  22. 22.
    Corea, W.T., Klosowski, J.T., Silva, C.T.: Out-of-core sort-first parallel rendering for cluster-based tiled displays. In: Fourth Eurographics Workshop on Parallel Graphics and Visualization, pp. 63–71 (2002) Google Scholar
  23. 23.
    Hubo, E., Bekaert, P.: A data distribution strategy for parallel point-based rendering. In: Proceedings International Conference on Computer Graphics, Visualization and Computer Vision, pp. 1–8 (2005) Google Scholar
  24. 24.
    Zhang, Y., Pajarola, R.: Deferred blending: Image composition for single-pass point rendering. Comput. Graph. 31(2), 175–189 (2007) CrossRefGoogle Scholar
  25. 25.
    Corrêa, W.T., Fleishman, S., Silva, C.T.: Towards point-based acquisition and rendering of large real-world environments. In: Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing, p. 59 (2002) CrossRefGoogle Scholar
  26. 26.
    Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel rendering. IEEE Comput. Graph. Appl. 14(4), 23–32 (1994) CrossRefGoogle Scholar
  27. 27.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press, Berkeley (1967) Google Scholar
  28. 28.
    Dasgupta, S.: The hardness of k-means clustering. CS2008-0916, Technical Report, Department of Computer Science and Engineering University of California, San Diego (2008) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Prashant Goswami
    • 1
  • Fatih Erol
    • 1
  • Rahul Mukhi
    • 3
  • Renato Pajarola
    • 1
  • Enrico Gobbetti
    • 2
  1. 1.Visualization and MultiMedia LabUniversity of ZurichZurichSwitzerland
  2. 2.CRS4Pula (CA)Italy
  3. 3.Department of InformaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations