Advertisement

The Visual Computer

, Volume 28, Issue 5, pp 463–473 | Cite as

Detail-preserving exposure fusion using subband architecture

  • Jianbing Shen
  • Ying Zhao
  • Ying He
Original Article

Abstract

In this paper, we present a novel detail-preserving fusion approach from multiple exposure images using subband architecture. Given a sequence of different exposures, the Quadrature Mirror Filter (QMF) based subband architecture is first employed to decompose the original sequence into different frequency subbands. After that, we compute the importance weight maps according to the image appearance measurements, such as exposure, contrast, and saturation. In order to preserve the details of the subband signals, we compute the gain control maps and improve these subbands. Finally, the coefficients of subbands are blended into a high-quality detail-preserving fusion image. Experimental results demonstrate that the proposed approach successfully creates a visually pleasing exposure fusion image.

Keywords

Exposure fusion Subband architecture QMF pyramid Tone mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnston, J.D.: A filter family designed for use in quadrature mirror filter banks. In: Proceedings of ICASSP, pp. 291–294 (1980) Google Scholar
  2. 2.
    Burt, P., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2(4), 217–236 (1983) CrossRefGoogle Scholar
  3. 3.
    Woods, J.W., O’Neil, S.D.: Subband coding of images. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1278–1288 (1986) CrossRefGoogle Scholar
  4. 4.
    Swaminathan, K., Vaidyanathan, P.: Theory and design of uniform DFT, parallel, quadrature mirror filter banks. IEEE Trans. Circuits Syst. 33(12), 1170–1191 (1986) CrossRefGoogle Scholar
  5. 5.
    Simoncelli, E.P., Adelson, E.H.: Subband transforms. In: Subband Image Coding, vol. 4, pp. 143–192. Kluwer Academic, Norwell (1990) Google Scholar
  6. 6.
    Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 710–732 (1992) CrossRefGoogle Scholar
  7. 7.
    Heeger, D.J.: Half-squaring in responses of cat striate cells. Vis. Neurosci. 9, 427–443 (1992) CrossRefGoogle Scholar
  8. 8.
    Xia, T., Jiang, Q.: Optimal multifilter banks: design related symmetric extension transform and application to image compression. IEEE Trans. Signal Process. 47(7), 1878–1889 (1995) CrossRefGoogle Scholar
  9. 9.
    Mann, S., Picard, R.W.: On being undigital with digital cameras: extending dynamic range by combining exposed pictures. In: Proceedings of IS& T 48th Annual Conference, pp. 422–428 (1995) Google Scholar
  10. 10.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of SIGGRAPH, pp. 369–378. ACM, New York (1997) CrossRefGoogle Scholar
  11. 11.
    Uyttendaele, M., Eden, A., Skeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: Proceedings of CVPR, pp. 509–512 (2001) Google Scholar
  12. 12.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of SIGGRAPH, pp. 267–276. ACM, New York (2002) Google Scholar
  13. 13.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: Proceedings of SIGGRAPH, pp. 257–266. ACM, New York (2002) Google Scholar
  14. 14.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proceedings of SIGGRAPH, pp. 249–256. ACM, New York (2002) Google Scholar
  15. 15.
    Yee, H., Pattanaik, S.N.: Segmentation and adaptive assimilation for detailpreserving display of high-dynamic range images. Vis. Comput. 19(7–8), 457–466 (2003) Google Scholar
  16. 16.
    Petrovic, V.S., Xydeas, C.S.: Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 13(2), 228–237 (2004) CrossRefGoogle Scholar
  17. 17.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004) CrossRefGoogle Scholar
  18. 18.
    Ward, G.: Fast, robust image registration for compositing high dynamic range photographs from handheld exposures. J. Graph. Tools 8(2), 17–30 (2004) CrossRefGoogle Scholar
  19. 19.
    Raskar, R., Ilie, A., Yu, J.: Image fusion for context enhancement and video surrealism. In: Proceedings of NPAR, pp. 85–95 (2004) CrossRefGoogle Scholar
  20. 20.
    Chan, S.C., Pun, C.K.S., Ho, K.L.: New design and realization techniques for a class of perfect reconstruction two-channel FIR filter banks and wavelet bases. IEEE Trans. Signal Process. 52(7), 2135–2141 (2004) CrossRefGoogle Scholar
  21. 21.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Vis. Comput. Graph. 11(1), 13–24 (2005) CrossRefGoogle Scholar
  22. 22.
    Goshtasby, A.: Fusion of mutli-exposure images. Image Vis. Comput. 23(6), 611–618 (2005) CrossRefGoogle Scholar
  23. 23.
    Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24(3), 836–844 (2005) CrossRefGoogle Scholar
  24. 24.
    Smith, M.I., Heather, J.P.: Review of image fusion technology in 2005. Proc. SPIE 5782, 29–45 (2005) CrossRefGoogle Scholar
  25. 25.
    Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting. Morgan Kaufmann, San Mateo (2005) Google Scholar
  26. 26.
    Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. In: Proceedings of ECCV, pp. 568–580 (2006) Google Scholar
  27. 27.
    Kao, W.C., Hsu, C.C., Chen, L.Y., Kao, C.C., Chen, S.H.: Integrating image fusion and motion stabilization for capturing still images in high dynamic range scenes. IEEE Trans. Consum. Electron. 52(3), 735–741 (2006) CrossRefGoogle Scholar
  28. 28.
    Khan, E.A., Akyuz, A.O., Reinhard, E.: Ghost removal in high dynamic range images. In: Proceedings of ICIP, pp. 2005–2008 (2006) Google Scholar
  29. 29.
    Jacobs, K., Loscos, C., Ward, G.: Automatic high-dynamic range image generation for dynamic scenes. IEEE Comput. Graph. Appl. 28(2), 84–93 (2008) CrossRefGoogle Scholar
  30. 30.
    Gallo, O., Gelfand, N., Chen, W., Tico, M., Pulli, K.: Artifact-free high dynamic range imaging. In: IEEE International Conference on Computational Photography (ICCP) (2009) Google Scholar
  31. 31.
    Mertens, T., Kautz, J., Reeth, F.V.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28(1), 161–171 (2008) CrossRefGoogle Scholar
  32. 32.
    Raman, S., Chaudhuri, S.: Bilateral filter based compositing for variable exposure. In: Short Papers, Eurographics, pp. 1–4 (2009) Google Scholar
  33. 33.
    Raman, S., Kumar, V., Chaudhuri, S.: Blind de-ghosting for automatic multi-exposure compositing. In: Proceedings of SIGGRAPH ASIA 2009 Posters. ACM, New York (2009) Google Scholar
  34. 34.
    Heo, Y., Lee, K., Lee, S., Moon, Y., Cha, J.: Ghost-free high dynamic range imaging. In: Proceedings of ACCV, pp. 486–500 (2010) Google Scholar
  35. 35.
    Raman, S., Chaudhuri, S.: Bottom-up segmentation for ghost-free reconstruction of a dynamic scene from multi-exposure images. In: Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, pp. 56–63 (2010) CrossRefGoogle Scholar
  36. 36.
    Zhang, W., Cham, W.K.: Gradient-directed composition of multi-exposure images. In: Proceedings of IEEE CVPR, pp. 530–536 (2010) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Beijing Laboratory of Intelligent Information Technology, School of Computer ScienceBeijing Institute of TechnologyBeijingP.R. China
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations