The Visual Computer

, Volume 28, Issue 2, pp 181–191 | Cite as

A clustering-based system to automate transfer function design for medical image visualization

  • Binh P. Nguyen
  • Wei-Liang Tay
  • Chee-Kong Chui
  • Sim-Heng Ong
Original Article

Abstract

Finding good transfer functions for rendering medical volumes is difficult, non-intuitive, and time-consuming. We introduce a clustering-based framework for the automatic generation of transfer functions for volumetric data. The system first applies mean shift clustering to oversegment the volume boundaries according to their low-high (LH) values and their spatial coordinates, and then uses hierarchical clustering to group similar voxels. A transfer function is then automatically generated for each cluster such that the number of occlusions is reduced. The framework also allows for semi-automatic operation, where the user can vary the hierarchical clustering results or the transfer functions generated. The system improves the efficiency and effectiveness of visualizing medical images and is suitable for medical imaging applications.

Keywords

Transfer function design Volume rendering LH histogram Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajaj, C.L., Pascucci, V., Schikore, D.R.: The contour spectrum. In: Proceedings of IEEE Visualization, pp. 167–173 (1997) Google Scholar
  2. 2.
    Chan, M.Y., Wu, Y., Mak, W.H., Chen, W., Qu, H.: Perception-based transparency optimization for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 15(6), 1077–2626 (2009) Google Scholar
  3. 3.
    Correa, C.D., Ma, K.L.: Size-based transfer functions: a new volume exploration technique. IEEE Trans. Vis. Comput. Graph. 14(6), 1380–1387 (2008) CrossRefGoogle Scholar
  4. 4.
    Correa, C.D., Ma, K.L.: The occlusion spectrum for volume visualization and classification. IEEE Trans. Vis. Comput. Graph. 15(6), 1465–1472 (2009) CrossRefGoogle Scholar
  5. 5.
    Correa, C.D., Ma, K.L.: Visibility driven transfer functions. In: IEEE Pacific Visualization Symposium, pp. 177–184 (2009) CrossRefGoogle Scholar
  6. 6.
    Correa, C.D., Ma, K.L.: Visibility histograms and visibility-driven transfer functions. IEEE Trans. Vis. Comput. Graph. 17(2), 1077–2626 (2010) Google Scholar
  7. 7.
    Duda, R.O., Ehart, P., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2001) MATHGoogle Scholar
  8. 8.
    Fukunaga, K., Larry, H.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975) MATHCrossRefGoogle Scholar
  9. 9.
    Hadwiger, M., Fritz, L., Rezk-Salama, C., Höllt, T., Geier, G., Pabel, T.: Interactive volume exploration for feature detection and quantification in industrial CT data. IEEE Trans. Vis. Comput. Graph. 14(6), 1507–1514 (2008) CrossRefGoogle Scholar
  10. 10.
    Hladuvka, J., König, A., Gröller, E.: Curvature-based transfer functions for direct volume rendering. In: Proceedings of Spring Conference on Computer Graphics, pp. 58–65 (2000) Google Scholar
  11. 11.
    Hong, D., Ning, G., Zhao, T., Zhang, M., Zheng, X.: Method of normal estimation based on approximation for visualization. J. Electron. Imaging 12(3), 470–477 (2003) CrossRefGoogle Scholar
  12. 12.
    Huang, R., Ma, K.L.: RGVis: region growing based techniques for volume visualization. In: Proceedings of Pacific Conference on Computer Graphics and Applications, pp. 355–363 (2003) Google Scholar
  13. 13.
    Kindlmann, G.: Transfer functions in direct volume rendering: design, interface, interaction. In: Course Note of ACM SIGGRAPH (2002) Google Scholar
  14. 14.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 79–86 (1998) CrossRefGoogle Scholar
  15. 15.
    Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: methods and applications. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 513–520 (2003) Google Scholar
  16. 16.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 255–262 (2001) Google Scholar
  17. 17.
    Kniss, J., Kindlmann, G., Hansen, C.: Multi-dimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002) CrossRefGoogle Scholar
  18. 18.
    Lum, E.B., Ma, K.L.: Lighting transfer functions using gradient aligned sampling. In: Proceedings of IEEE Visualization, pp. 289–296 (2004) Google Scholar
  19. 19.
    Lundström, C., Ljung, P., Ynnerman, A.: Extending and simplifying transfer function design in medical volume rendering using local histograms. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 263–270 (2005) Google Scholar
  20. 20.
    Lundström, C., Ljung, P., Ynnerman, A.: Local histograms for design of transfer functions in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 12(6), 1570–1579 (2006) CrossRefGoogle Scholar
  21. 21.
    Lundström, C., Ynnerman, A., Ljung, P., Persson, A., Knutsson, H.: The α-histogram: using spatial coherence to enhance histograms and transfer function design. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 227–234 (2006) Google Scholar
  22. 22.
    Maciejewski, R., Chen, W., Woo, I., Ebert, D.S.: Structuring feature space—a non-parametric method for volumetric transfer function generation. IEEE Trans. Vis. Comput. Graph. 15(6), 1473–1480 (2009) CrossRefGoogle Scholar
  23. 23.
    de Moura Pinto, F., Freitas, C.M.D.S.: Design of multi-dimensional transfer functions using dimensional reduction. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 131–138 (2007) Google Scholar
  24. 24.
    Nguyen, B.P., Tay, W.L., Chui, C.K., Ong, S.H.: Automatic transfer function design for volumetric data visualization using clustering on LH space. In: Proceedings of Computer Graphics International (2011) Google Scholar
  25. 25.
    Pekar, V., Wiemker, R., Hempel, D.: Fast detection of meaningful isosurfaces for volume data visualization. In: Proceedings of IEEE Visualization, pp. 223–230 (2001) Google Scholar
  26. 26.
    Praßni, J.S., Ropinski, T., Hinrichs, K.H.: Efficient boundary detection and transfer function generation in direct volume rendering. In: Proceedings of the 14th International Fall Workshop on Vision, Modeling, and Visualization (VMV09), pp. 285–294 (2009) Google Scholar
  27. 27.
    Röttger, S., Bauer, M., Stamminger, M.: Spatialized transfer functions. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 271–278 (2005) Google Scholar
  28. 28.
    Tappenbeck, A., Preim, B., Dicken, V.: Distance-based transfer function design: specification methods and applications. In: Proceedings of Simulation und Visualisierung, pp. 259–274 (2006) Google Scholar
  29. 29.
    Teistler, M., Breiman, R.S., Liong, S.M., Ho, L.Y., Shahab, A., Nowinski, W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Comput. Assisted Radiol. Surg. 2(1), 55–64 (2007) CrossRefGoogle Scholar
  30. 30.
    Tzeng, F.Y., Ma, K.L.: A cluster-space visual interface for arbitrary dimensional classification of volume data. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 17–24 (2004) Google Scholar
  31. 31.
    Tzeng, F.Y., Lum, E.B., Ma, K.L.: A novel interface for higher-dimensional classification of volume data. In: Proceedings of IEEE Visualization, pp. 505–512 (2003) Google Scholar
  32. 32.
    Tzeng, F.Y., Lum, E.B., Ma, K.L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Trans. Vis. Comput. Graph. 11(3), 273–284 (2005) CrossRefGoogle Scholar
  33. 33.
    Šereda, P., Bartroli, A.V., Serlie, I.W.O., Gerritsen, F.A.: Visualization of boundaries in volumetric data sets using LH histograms. IEEE Trans. Vis. Comput. Graph. 12(2), 208–218 (2006) CrossRefGoogle Scholar
  34. 34.
    Šereda, P., Vilanova, A., Gerritsen, F.A.: Automating transfer function design for volume rendering using hierarchical clustering of material boundaries. In: Proceedings of IEEE/Eurographics Symposium on Visualization, pp. 243–250 (2006) Google Scholar
  35. 35.
    Wesarg, S., Kirschner, M.: Structure size enhanced histogram. In: Brauer, W., Meinzer, H.P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2009. Informatik aktuell, pp. 16–20. Springer, Berlin (2009) CrossRefGoogle Scholar
  36. 36.
    Wesarg, S., Kirschner, M., Khan, M.F.: 2D histogram based volume visualization: combining intensity and size of anatomical structures. Int. J. Comput. Assist. Radiol. Surg. 5(6), 655–666 (2010) CrossRefGoogle Scholar
  37. 37.
    Zhou, F., Zhao, Y., Ma, K.: Parallel mean shift for interactive volume segmentation. Mach. Learn. Med. Imaging, 67–75 (2010) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Binh P. Nguyen
    • 1
  • Wei-Liang Tay
    • 1
  • Chee-Kong Chui
    • 3
  • Sim-Heng Ong
    • 2
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Computer Engineering, and Division of BioengineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations