The Visual Computer

, 27:991

Part-in-whole 3D shape matching and docking

Original Article

Abstract

A new algorithmic framework is proposed to efficiently recognize instances of template shapes within target 3D models or scenes. The new framework provides an efficient solution of the part-in-whole matching problem and, with simple adaptations, it can also be exploited to quickly select sites in the target which properly fit with the template. Therefore, the method proposed potentially offers a new approach to all applications where complementarity has to be analysed quickly such as, for instance, docking. By assuming that the template is small when compared to the target, the proposed approach distinguishes from the previous literature because the part-in-whole matching is obtained by extracting offline only the shape descriptor of the template, while the description of the target is dynamically and adaptively extracted during the matching process. This novel framework, called the Fast Reject schema, exploits the incremental nature of a class of local shape descriptors to significantly reduce the part-in-whole matching time, without any expensive processing of the models for the extraction of the shape descriptors. The schema has been tested on three different descriptors and results are discussed in detail. Experiments show that the gain in computational performances does not compromise the accuracy of the matching results. An additional descriptor is introduced to compute parts of the target having a complementary shape with respect to the template. Results of such a shape complementarity detection are shown in domains such as cultural heritage and drug design.

Keywords

Object recognition Partial matching Shape complementarity 

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003) CrossRefGoogle Scholar
  2. 2.
    Atilgan, E., Hu, J.: Efficient protein–ligand docking using sustainable evolutionary algorithm. In: Proceeding of the 10th International Conference on Hybrid Intelligence, pp. 113–118 (2010) Google Scholar
  3. 3.
    Attene, M., Falcidieno, B.: Remesh: An interactive environment to edit and repair triangle meshes. In: Shape Modeling and Applications, pp. 271–276 (2006) Google Scholar
  4. 4.
    Attene, M., Marini, S., Spagnuolo, M., Falcidieno, B.: The Fast Reject schema for part-in-whole 3D shape matching. In: Proceedings of the Eurographics Workshop on 3D Objects Retrieval (3DOR 2010), pp. 23–30 (2010) Google Scholar
  5. 5.
    Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Characterization of 3D shape parts for semantic annotation. Comput. Aided Des. 41(10), 756–763 (2009) CrossRefGoogle Scholar
  6. 6.
    Bajaj, C., Chowdhury, R., Siddavanahalli, V.: f 2 dock: Fast Fourier protein–protein docking. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 45–58 (2011). http://doi.ieeecomputersociety.org/10.1109/TCBB.2009.57 CrossRefGoogle Scholar
  7. 7.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 509–522 (2002) CrossRefGoogle Scholar
  8. 8.
    Bespalov, D., Shokoufandeh, A., Regli, W.C., Sun, W.: Scale-space representation of 3D models and topological matching. In: Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pp. 208–215. ACM, New York (2003) CrossRefGoogle Scholar
  9. 9.
    Bian, X., Wang, X., Zhang, W., Yan, Z.: Design of a visual guiding system for IAUV docking. In: International Conference on Mechatronics and Automation, p. 2107 (2009) CrossRefGoogle Scholar
  10. 10.
    Biasotti, S., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Marini, S., Patané, G., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 12:1–87 (2008) CrossRefGoogle Scholar
  11. 11.
    Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput. Aided Des. 38(9), 1002–1019 (2006) CrossRefGoogle Scholar
  12. 12.
    Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vis. 84(2), 163–183 (2009). doi:10.1007/s11263-008-0147-3 CrossRefGoogle Scholar
  13. 13.
    Bronstein, A.M., Bronstein, M.M., Carmon, Y., Kimmel, R.: Partial similarity of shapes using a statistical significance measure. IPSJ Trans. Comput. Vis. Appl. 1, 105–114 (2009) CrossRefGoogle Scholar
  14. 14.
    Bustos, B., Keim, D.A., Saupe, D., Schreck, T., Vranić, D.V.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005). http://doi.acm.org/10.1145/1118890.1118893 CrossRefGoogle Scholar
  15. 15.
    Christiansen, S., Nilson, T.: Docking system for autonomous, un-manned docking operations. In: Aerospace Conference, p. 1 (2008) Google Scholar
  16. 16.
    Cohen, F., Zhang, Z., Jeppson, P.: Virtual reconstruction of archaeological vessels using convex hulls of surface markings. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55–61 (2010) CrossRefGoogle Scholar
  17. 17.
    Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: SMI’05 Proceedings, pp. 368–373. IEEE Comput. Soc., Los Alamitos (2005) Google Scholar
  18. 18.
    Corney, J., Rea, H., Clark, D., Pritchard, J., Breaks, M., MacLeod, R.: Coarse filters for shape matching. IEEE Comput. Graph. Appl. 22(3), 65–74 (2002) CrossRefGoogle Scholar
  19. 19.
    Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for complex polygonal models. In: PG’04: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, pp. 43–50. IEEE Comput. Soc., Washington (2004) CrossRefGoogle Scholar
  20. 20.
    Elad, M., Tal, A., Ar, S.: Content based retrieval of VRML objects: an iterative and interactive approach. In: Proceedings of the Sixth Eurographics Workshop on Multimedia 2001, pp. 107–118. Springer, New York (2002) Google Scholar
  21. 21.
    Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (2002) CrossRefGoogle Scholar
  22. 22.
    Ferreira, A., Marini, S., Attene, M., Fonseca, M.J., Spagnuolo, M., Jorge, J.A., Falcidieno, B.: Thesaurus-based 3D object retrieval with part-in-whole matching. Int. J. Comput. Vis. 89, 327–347 (2010). doi:10.1007/s11263-009-0257-6 CrossRefGoogle Scholar
  23. 23.
    Fleuret, F., Geman, D.: Coarse-to-fine face detection. Int. J. Comput. Vis. 41, 85–107 (2001) MATHCrossRefGoogle Scholar
  24. 24.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graph. 22(1), 83–101 (2003) CrossRefGoogle Scholar
  25. 25.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006) CrossRefGoogle Scholar
  26. 26.
    Golovinskiy, A., Kim, V., Funkhouser, T.: Shape-based recognition of 3D point clouds in urban environments. In: International Conference on Computer Vision (ICCV) (2009) Google Scholar
  27. 27.
    Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). http://doi.acm.org/10.1145/1141911.1141925 CrossRefGoogle Scholar
  28. 28.
    Igwe, P.C., Knopf, G.K.: 3D object reconstruction using geometric computing. In: Proceedings of the Conference on Geometric Modeling and Imaging: New Trends, pp. 9–14. IEEE Comput. Soc., Washington (2006). doi:10.1109/GMAI.2006.1. http://portal.acm.org/citation.cfm?id=1155446.1156019 CrossRefGoogle Scholar
  29. 29.
    Johnson, A.E., Hebert, M.: Recognizing objects by matching oriented points. In: CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR’97), p. 684. IEEE Comput. Soc., Los Alamitos (1997) CrossRefGoogle Scholar
  30. 30.
    Kazhdan, M.: Shape representation and algorithms for 3D model retrieval. Ph.D. Thesis, Princeton University (2004) Google Scholar
  31. 31.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Proceedings of Symposium in Geometry Processing, Aachen, pp. 156–165 (2003) Google Scholar
  32. 32.
    Liu, Y., Li, W., Wang, Y., Lv, M.: An efficient approach for flexible docking base on particle swarm optimization. In: 2nd International Conference on Biomedical Engineering and Informatics, BMEI’09, pp. 1–7 (2009) Google Scholar
  33. 33.
    Mortara, M., Patane, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Papaioannou, G., Karabassi, E.A.: On the automatic assemblage of arbitrary broken solid artefacts. Image Vis. Comput. 21(5), 401–412 (2003) CrossRefGoogle Scholar
  35. 35.
    Papaioannou, G., Karabassi, E.A., Theoharis, T.: Reconstruction of three-dimensional objects through matching of their parts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 114–124 (2002) CrossRefGoogle Scholar
  36. 36.
    Ruiz-Correa, S., Shapiro, L.G., Meila, M.: A new paradigm for recognizing 3-D object shapes from range data. In: ICCV’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, p. 1126. IEEE Comput. Soc., Washington (2003) CrossRefGoogle Scholar
  37. 37.
    Shilane, P., Funkhouser, T.: Distinctive regions of 3D surfaces. ACM Trans. Graph. 26(2), 7 (2007). http://doi.acm.org/10.1145/1243980.1243981 CrossRefGoogle Scholar
  38. 38.
    Suzuki, M.T., Yaginuma, Y., Shimizu, Y.: A partial shape matching technique for 3D model retrieval systems. In: ACM SIGGRAPH 2005 Posters, p. 128. ACM, New York (2005) CrossRefGoogle Scholar
  39. 39.
    Suzuki, M.T., Yaginuma, Y., Yamada, T., Shimizu, Y.: A partial shape matching method for 3D model databases. In: Proceedings of the Ninth IASTED International Conference on Software Engineering and Applications (SEA2005), pp. 389–394. Acta Press, Phoenix (2005) Google Scholar
  40. 40.
    Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39, 441–471 (2008). doi:10.1007/s11042-007-0181-0. http://portal.acm.org/citation.cfm?id=1395016.1395041 CrossRefGoogle Scholar
  41. 41.
    Tierny, J., Vandeborre, J.P., Daoudi, M.: Partial 3D shape retrieval by reeb pattern unfolding. Comput. Graph. Forum 28, 41–55 (2009) CrossRefGoogle Scholar
  42. 42.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Attene
    • 1
  • S. Marini
    • 1
  • M. Spagnuolo
    • 1
  • B. Falcidieno
    • 1
  1. 1.IMATI-GE/CNRGenovaItaly

Personalised recommendations