The Visual Computer

, 27:963 | Cite as

Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes

  • Ivan Sipiran
  • Benjamin Bustos
Original Article


With the increasing amount of 3D data and the ability of capture devices to produce low-cost multimedia data, the capability to select relevant information has become an interesting research field. In 3D objects, the aim is to detect a few salient structures which can be used, instead of the whole object, for applications like object registration, retrieval, and mesh simplification. In this paper, we present an interest points detector for 3D objects based on Harris operator, which has been used with good results in computer vision applications. We propose an adaptive technique to determine the neighborhood of a vertex, over which the Harris response on that vertex is calculated. Our method is robust to several transformations, which can be seen in the high repeatability values obtained using the SHREC feature detection and description benchmark. In addition, we show that Harris 3D outperforms the results obtained by recent effective techniques such as Heat Kernel Signatures.


3D interest points detection Local features Harris operator 


  1. 1.
    Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L.J., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikov, M., Patane, G., Spagnuolo, M., Sun, J.: SHREC 2010: Robust feature detection and description benchmark. In: Proc. Eurographics Workshop on 3D Object Retrieval, pp. 79–86. Eurographics Association, Aire-la-Ville (2010) Google Scholar
  2. 2.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007) CrossRefGoogle Scholar
  3. 3.
    Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Comput. Graph. Forum 27(2), 643–652 (2008) CrossRefGoogle Scholar
  4. 4.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. SIGGRAPH ’97, pp. 209–216. ACM Press/Addison-Wesley, New York (1997) CrossRefGoogle Scholar
  5. 5.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Proc. Eurographics Symposium on Geometry Processing, p. 197. Eurographics Association, Aire-la-Ville (2005) Google Scholar
  6. 6.
    Glomb, P.: Detection of interest points on 3D data: Extending the Harris operator. In: Computer Recognition Systems 3. Advances in Soft Computing, vol. 57, pp. 103–111. Springer, Berlin (2009) CrossRefGoogle Scholar
  7. 7.
    Harris, C., Stephens, M.: A combined corner and edge detection. In: Proc. of The Fourth Alvey Vision Conference, pp. 147–151 (1988) Google Scholar
  8. 8.
    Ho, H., Gibbins, D.: Curvature-based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds. IET Comput. Vis. 3(4), 201 (2009) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009) CrossRefGoogle Scholar
  10. 10.
    Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape vector image diffusion. IEEE Trans. Vis. Comput. Graph. 14(6), 1643–1650 (2008) CrossRefGoogle Scholar
  11. 11.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8), 649–658 (2005) CrossRefGoogle Scholar
  12. 12.
    Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005) CrossRefGoogle Scholar
  13. 13.
    Laptev, I., Pérez, P.: Retrieving actions in movies. In: Int. Conf. in Comput. Vis, pp. 1–8 (2007) Google Scholar
  14. 14.
    Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: Proc. Int. Conf. and Exhib. on Comput. Graph. and Interact. Tech. SIGGRAPH ’05, pp. 659–666. ACM, New York (2005) Google Scholar
  15. 15.
    Liu, Y., Zha, H., Qin, H.: Shape topics: A compact representation and new algorithms for 3D partial shape retrieval. In: Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit. CVPR ’06, pp. 2025–2032. IEEE Computer Society, Washington (2006) Google Scholar
  16. 16.
    Loog, M., Lauze, F.: The improbability of Harris interest points. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1141–1147 (2010) CrossRefGoogle Scholar
  17. 17.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  18. 18.
    Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis., Special Issue on 3D Object Retrieval (2009) Google Scholar
  19. 19.
    Mikolajczyk, K.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004) CrossRefGoogle Scholar
  20. 20.
    Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: Proc. Int. Conf. on Comput. Vis., pp. 1–8. IEEE, New York (2007) Google Scholar
  21. 21.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000) zbMATHCrossRefGoogle Scholar
  22. 22.
    Shilane, P., Funkhouser, T.: Selecting distinctive 3D shape descriptors for similarity retrieval. In: Proc. IEEE Int. Conf. on Shape Model. and Appl. SMI ’06, Washington, DC, USA, p. 18 (2006) Google Scholar
  23. 23.
    Sipiran, I., Bustos, B.: A robust 3D interest points detector based on Harris operator. In: Proc. Eurographics Workshop on 3D Object Retrieval, pp. 7–14. Eurographics Association, Aire-la-Ville (2010) Google Scholar
  24. 24.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009) CrossRefGoogle Scholar
  25. 25.
    Tierny, J., Vandeborre, J.P., Daoudi, M.: Enhancing 3D mesh topological skeletons with discrete contour constrictions. Vis. Comput. 24(3), 155–172 (2008) CrossRefGoogle Scholar
  26. 26.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description with applications to mesh matching. In: Proc. IEEE Conf. on Comput. Vis. and Pattern Recognit. CVPR ’09, Miami Beach, Florida (2009) Google Scholar
  27. 27.
    Zou, G., Hua, J., Dong, M., Qin, H.: Surface matching with salient keypoints in geodesic scale space. Comput. Animat. Virtual Worlds 19(3–4), 399–410 (2008) CrossRefGoogle Scholar
  28. 28.
    Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. IEEE Trans. Vis. Comput. Graph. 15(6), 1193–1200 (2009) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.PRISMA Research Group, Department of Computer ScienceUniversity of ChileSantiagoChile

Personalised recommendations