The Visual Computer

, Volume 28, Issue 3, pp 231–245 | Cite as

Volume-preserving FFD for programmable graphics hardware

  • Stefanie Hahmann
  • Georges-Pierre Bonneau
  • Sébastien Barbier
  • Gershon Elber
  • Hans Hagen
Original Article

Abstract

Free-Form Deformation (FFD) is a well established technique for deforming arbitrary object shapes in space. Although more recent deformation techniques have been introduced, among them skeleton-based deformation and cage-based deformation, the simple and versatile nature of FFD is a strong advantage, and justifies its presence in nowadays leading commercial geometric modeling and animation software systems. Since its introduction in the late 1980s, many improvements have been proposed to the FFD paradigm, including control lattices of arbitrary topology, direct shape manipulation and GPU implementation. Several authors have addressed the problem of volume-preserving FFD. These previous approaches either make use of expensive nonlinear optimization techniques, or resort to first order approximation suitable only for small-scale deformations. In this paper we take advantage of the multi-linear nature of the volume constraint in order to derive a simple, exact and explicit solution to the problem of volume-preserving FFD. Two variants of the algorithm are given, without and with direct shape manipulation. Moreover, the linearity of our solution enables to implement it efficiently on GPU.

Keywords

Free form deformations (FFD) Volume preservation Graphics hardware Direct manipulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubert, F., Bechmann, D.: Volume-preserving space deformation. Comput. Graph. 21(5), 625–639 (1997) CrossRefGoogle Scholar
  2. 2.
    Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA. Technical report, NVIDIA Technical Report NVR-2008-004, December 2008 Google Scholar
  3. 3.
    Ben-Chen, M., Weber, O., Gotsman, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 1–11 (2009) CrossRefGoogle Scholar
  4. 4.
    Cohen, E., Riesenfeld, R., Elber, G.: Geometric Modeling with Splines: An Introduction. AK Peters, Wellesley (2001) MATHGoogle Scholar
  5. 5.
    Coquillart, S.: Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In: SIGGRAPH ’90: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–196. ACM, New York (1990) CrossRefGoogle Scholar
  6. 6.
    Faloutsos, P., Van De Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE Trans. Vis. Comput. Graph. 3, 201–214 (1997) CrossRefGoogle Scholar
  7. 7.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 5th edn. Academic Press, New York (2002) Google Scholar
  8. 8.
    Goodnight, N., Woolley, C., Lewin, G., Luebke, D., Humphreys, G.: A multigrid solver for boundary value problems using programmable graphics hardware. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 102–111. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  9. 9.
    Hirota, G., Maheshwari, R., Lin, M.C.: Fast volume-preserving free form deformation using multi-level optimization. In: SMA ’99: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, pp. 234–245. ACM, New York (1999) CrossRefGoogle Scholar
  10. 10.
    Hsu, W.M., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In: SIGGRAPH ’92: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, pp. 177–184. ACM, New York (1992) CrossRefGoogle Scholar
  11. 11.
    Hu, S.-M., Zhang, H., Tai, C.-L., Sun, J.-G.: Direct manipulation of FFD: Efficient explicit solutions and decomposible multiple point constraints. Vis. Comput. 17(6), 370–379 (2001) MATHGoogle Scholar
  12. 12.
    Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Skinning with dual quaternions. In: Symposium on Interactive 3D Graphics, pp. 39–46 (2007) Google Scholar
  13. 13.
    Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003) CrossRefGoogle Scholar
  14. 14.
    Lasseter, J.: Principles of traditional animation applied to 3d computer animation. In: SIGGRAPH’87 Computer Graphics, pp. 35–44 (1987) Google Scholar
  15. 15.
    Lien, S.-L., Kajiya, J.T.: A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE Comput. Graph. Appl. 4(9), 1984 Google Scholar
  16. 16.
    MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topology. In: SIGGRAPH ’96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques pp. 234–245. ACM, New York (1996) Google Scholar
  17. 17.
    Marinov, M., Botsch, M., Kobbelt, L.: GPU-based multiresolution deformation using approximate normal field reconstruction. J. Graph. GPU Game Tools 12(1), 27–46 (2007) CrossRefGoogle Scholar
  18. 18.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2005) CrossRefGoogle Scholar
  19. 19.
    Rappoport, A., Sheffer, A., Bercovier, M.: Volume-preserving free-form solids. IEEE Trans. Vis. Comput. Graph. 2(1), 19–27 (1996) CrossRefGoogle Scholar
  20. 20.
    Rhee, T., Lewis, J., Neumann, U.: Real-time weighted pose-space deformation on the GPU. Comput. Graph. Forum 25(3), 2006 Google Scholar
  21. 21.
    Schein, S., Elber, G.: Real-time freedom deformation using programmable hardware. Int. J. Shape Model. 12(2), 179–192 (2006) MATHCrossRefGoogle Scholar
  22. 22.
    Schein, S., Karpen, E., Elber, G.: Real-time geometric deformation displacement maps using programmable hardware. Vis. Comput. 21(8–10), 791–800 (2005) CrossRefGoogle Scholar
  23. 23.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20(4), 151–160 (1986) CrossRefGoogle Scholar
  24. 24.
    Sengupta, S., Harris, M., Garland, M.: Efficient parallel scan algorithms for GPUs. Technical report, NVIDIA Technical Report NVR-2008-003, December 2008 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stefanie Hahmann
    • 1
    • 2
  • Georges-Pierre Bonneau
    • 1
  • Sébastien Barbier
    • 1
  • Gershon Elber
    • 3
  • Hans Hagen
    • 4
  1. 1.Laboratoire Jean Kuntzmann, INRIA Rhône-AlpesUniv. of GrenobleGrenobleFrance
  2. 2.INRIA – Laboratoire LJKSaint IsmierFrance
  3. 3.Computer Science DepartmentTechnionHaifaIsrael
  4. 4.FB InformatikTU KaiserslauternKaiserslauternGermany

Personalised recommendations