The Visual Computer

, Volume 27, Issue 6–8, pp 623–632 | Cite as

An evaluation of 3-D scene exploration using a multiperspective image framework

Original Article

Abstract

Multiperspective images (MPIs) show more than what is visible from a single viewpoint and are a promising approach for alleviating the problem of occlusions. We present a comprehensive user study that investigates the effectiveness of MPIs for 3-D scene exploration. A total of 47 subjects performed searching, counting, and spatial orientation tasks using both conventional and multiperspective images. We use a flexible MPI framework that allows trading off disocclusion power for image simplicity. The framework also allows rendering MPI images at interactive rates, which enables investigating interactive navigation and dynamic 3-D scenes. The results of our experiments show that MPIs can greatly outperform conventional images. For searching, subjects performed on average 28% faster using an MPI. For counting, accuracy was on average 91% using MPIs as compared to 42% for conventional images.

Keywords

Multiperspective images Occlusions Navigation Interactive 3-D scene exploration Visual interfaces User study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawala, M., Zorin, D., Munzner, T.: Artistic multiprojection rendering. In: Rendering Techniques 2000, pp. 125–136 (2000) Google Scholar
  2. 2.
    Bares, W.H., Lester, J.C.: Intelligent multi-shot visualization interfaces for dynamic 3D worlds. In: IUI’99, pp. 119–126 (1999) Google Scholar
  3. 3.
    Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P.J., Silva, C.T., Freire, J.: Vistrails: Enabling interactive multiple-view visualizations. In: VIS’05, p. 18 (2005) Google Scholar
  4. 4.
    Brosz, J., Samavati, F.F., Sheelagh, M.T.C., Sousa, M.C.: Single camera flexible projection. In: NPAR’07, pp. 33–42 (2007) Google Scholar
  5. 5.
    Bruckner, S., Groller, M.E.: Exploded views for volume data. IEEE Trans. Vis. Comput. Graph. 12(5), 1077–1084 (2006) CrossRefGoogle Scholar
  6. 6.
    Burns, M., Finkelstein, A.: Adaptive cutaways for comprehensible rendering of polygonal scenes. In: SIGGRAPH Asia 2008 Papers, pp. 1–7 (2008) Google Scholar
  7. 7.
    Carpendale, M., Cowperthwaite, D., Fracchia, F.: Extending distortion viewing from 2D to 3D. IEEE Comput. Graph. Appl. 17(4), 42–51 (1997) CrossRefGoogle Scholar
  8. 8.
    Coleman, P., Singh, K.: Ryan: rendering your animation nonlinearly projected. In: NPAR’04, pp. 129–156 (2004) Google Scholar
  9. 9.
    Cui, J., Rosen, P., Popescu, V., Hoffmann, C.: A curved ray camera for handling occlusions through continuous multiperspective visualization. IEEE Trans. Vis. Comput. Graph. 16(6), 1235–1242 (2010) CrossRefGoogle Scholar
  10. 10.
    Darken, R.P., Sibert, J.L.: Wayfinding strategies and behaviors in large virtual worlds. In: CHI’96, pp. 142–149 (1996) Google Scholar
  11. 11.
    Degener, P., Schnabel, R., Schwartz, C., Klein, R.: Effective visualization of short routes. IEEE Trans. Vis. Comput. Graph. 14, 1452–1458 (2008) CrossRefGoogle Scholar
  12. 12.
    Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in interactive technical illustrations. Comput. Graph. Forum 21(3), 317–325 (2002) CrossRefGoogle Scholar
  13. 13.
    Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive cutaway illustrations. In: Proceedings of Eurographics 2003, Computer Graphics Forum, pp. 523–532 (2003) Google Scholar
  14. 14.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3D occlusion management for visualization. IEEE Trans. Vis. Comput. Graph. 14(5), 1095–1109 (2008) CrossRefGoogle Scholar
  15. 15.
    Elmqvist, N., Tudoreanu, M.E., Tsigas, P.: Evaluating motion constraints for 3D wayfinding in immersive and desktop virtual environments. In: CHI’08, p. 1769–1778 (2008) Google Scholar
  16. 16.
    Fitzmaurice, G., Matejka, J., Mordatch, I., Khan, A., Kurtenbach, G.: Safe 3D navigation. In: I3D’08, pp. 7–15 (2008) Google Scholar
  17. 17.
    Hachet, M., Decle, F., Knodel, S., Guitton, P.: Navidget for easy 3D camera positioning from 2D inputs. In: 3D User Interfaces, pp. 83–89 (2008) CrossRefGoogle Scholar
  18. 18.
    Hanson, A.J., Wernert, E.A.: Constrained 3D navigation with 2D controllers. In: VIS’97, p. 175ff (1997) Google Scholar
  19. 19.
    Huang, J., Carter, M.B.: Interactive transparency rendering for large CAD models. IEEE Trans. Vis. Comput. Graph. 11(5), 584–595 (2005) CrossRefGoogle Scholar
  20. 20.
    Jankun-Kelly, T., Ma, K.L.: Visualization exploration and encapsulation via a spreadsheet-like interface. IEEE Trans. Vis. Comput. Graph. 7(3), 275–287 (2001) CrossRefGoogle Scholar
  21. 21.
    Khan, A., Komalo, B., Stam, J., Fitzmaurice, G., Kurtenbach, G.: Hovercam: Interactive 3D navigation for proximal object inspection. In: I3D’05, pp. 73–80 (2005) Google Scholar
  22. 22.
    Klein, A.W., Sloan, P.P.J., Finkelstein, A., Cohen, M.F.: Stylized video cubes. In: SCA’02, pp. 15–22 (2002) Google Scholar
  23. 23.
    Knödel, S., Hachet, M., Guitton, P.: Navidget for immersive virtual environments. In: VRST’08, pp. 47–50. ACM, New York (2008) Google Scholar
  24. 24.
    Kreuseler, M., Nocke, T., Schumann, H.: A history mechanism for visual data mining. In: INFOVIS’04, pp. 49–56 (2004) Google Scholar
  25. 25.
    Levoy, M.: Spreadsheets for images. In: SIGGRAPH’94, pp. 139–146 (1994) Google Scholar
  26. 26.
    Li, W., Ritter, L., Agrawala, M., Curless, B., Salesin, D.: Interactive cutaway illustrations of complex 3D models. In: SIGGRAPH’07, p. 31 (2007) Google Scholar
  27. 27.
    Li, W., Agrawala, M., Curless, B., Salesin, D.: Automated generation of interactive 3D exploded view diagrams. ACM Trans. Graph. 27(3), 1–7 (2008) CrossRefGoogle Scholar
  28. 28.
    McCrae, J., Mordatch, I., Glueck, M., Khan, A.: Multiscale 3D navigation. In: I3D’09, pp. 7–14 (2009) Google Scholar
  29. 29.
    Mei, C., Popescu, V., Sacks, E.: The occlusion camera. In: Proceedings of Eurographics 2005, Computer Graphics Forum, vol. 24, pp. 139–143 (2005) Google Scholar
  30. 30.
    Mine, M.R., Brooks, F.P. Jr., Sequin, C.H.: Moving objects in space: Exploiting proprioception in virtual-environment interaction. In: SIGGRAPH’97, pp. 19–26 (1997) CrossRefGoogle Scholar
  31. 31.
    Plumlee, M., Ware, C.: An evaluation of methods for linking 3D views. In: I3D’03, pp. 193–201 (2003) Google Scholar
  32. 32.
    Popescu, V., Rosen, P., Adamo-Villani, N.: The graph camera. ACM Trans. Graph. 28, 158 (2009) CrossRefGoogle Scholar
  33. 33.
    Qu, H., Wang, H., Cui, W., Wu, Y., Chan, M.Y.: Focus+context route zooming and information overlay in 3D urban environments. IEEE Trans. Vis. Comput. Graph. 15, 1547–1554 (2009) CrossRefGoogle Scholar
  34. 34.
    Rademacher, P., Bishop, G.: Multiple-center-of-projection images. In: SIGGRAPH’98, pp. 199–206 (1998) Google Scholar
  35. 35.
    Roberts, J.C.: Multiple-view and multiform visualization. In: Proceedings of SPIE Visual Data Exploration and Analysis VII, vol. 3960, pp. 176–185 (2000) Google Scholar
  36. 36.
    Roman, A., Lensch, H.P.A.: Automatic multiperspective images. In: Rendering Techniques 2006: Proceedings of the Eurographics Symposium on Rendering, pp. 161–171 (2006) Google Scholar
  37. 37.
    Roman, A., Garg, G., Levoy, M.: Interactive design of multi-perspective images for visualizing urban landscapes. In: VIS’04, pp. 537–544 (2004) Google Scholar
  38. 38.
    Shin, M.C., Tsap, L.V., Goldgof, D.B.: Towards perceptual interface for visualization navigation of large data sets. In: CVPRW’03, vol. 5, pp. 48–48 (2003) Google Scholar
  39. 39.
    Skopik, A., Gutwin, C.: Improving revisitation in fisheye views with visit wear. In: CHI’05, pp. 771–780 (2005) Google Scholar
  40. 40.
    Steed, A.: Efficient navigation around complex virtual environments. In: VRST’97, pp. 173–180 (1997) CrossRefGoogle Scholar
  41. 41.
    Tan, D.S., Robertson, G.G., Czerwinski, M.: Exploring 3D navigation: Combining speed-coupled flying with orbiting. In: CHI’01, pp. 418–425 (2001) Google Scholar
  42. 42.
    Wood, D.N., Finkelstein, A., Hughes, J.F., Thayer, C.E., Salesin, D.H.: Multiperspective panoramas for cel animation. In: SIGGRAPH’97, pp. 243–250 (1997) CrossRefGoogle Scholar
  43. 43.
    Yu, J., McMillan, L.: A framework for multiperspective rendering. In: Rendering Techniques 2004: Proceedings of the 15th Eurographics Workshop on Rendering Techniques, pp. 61–68 (2004) Google Scholar
  44. 44.
    Yu, J., McMillan, L.: General linear cameras. In: ECCV’04: The 8th European Conference on Computer Vision, vol. 2, pp. 14–27 (2004) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Computer Science DepartmentPurdue UniversityWest LafayetteUSA

Personalised recommendations