The Visual Computer

, 27:417 | Cite as

Shrinkage, wrinkling and ablation of burning cloth and paper

Original Article

Abstract

The burning of a sheet of cellulose-based material, such as paper or cloth, involves uneven shrinkage which causes wrinkling. We simulate this geometrically complicated phenomenon by modeling the effects of heat transfer, shrinkage and partial ablation on a thin shell. A strain-limitation technique is applied to a two-layer structure of springs arranged as a body-centered square. Although this structure is over-constrained, convergence can be achieved using a new successive fast projection method. We also remesh the shells dynamically to deal with the topological changes that occur as regions burn away.

Keywords

Constrained Lagrangian mechanics Fast projection The body-centered square Heat transfer 

References

  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. ACM, New York (1998) CrossRefGoogle Scholar
  2. 2.
    Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda. NVIDIA Technical Report NVR-2008-004 (2008) Google Scholar
  3. 3.
    Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., Grinspun, E.: A quadratic bending model for inextensible surfaces. In: SGP ’06: Proceedings of the Fourth Eurographics Symposium on Geometry processing, pp. 227–230. Eurographics Association, Aire-la-Ville (2006) Google Scholar
  4. 4.
    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: SCA’03: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 28–36. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  5. 5.
    Carlson, M., Mucha, P.J., Van Horn, R.B. III, Turk, G.: Melting and flowing. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’02, pp. 167–174. ACM, New York (2002) CrossRefGoogle Scholar
  6. 6.
    Choi, K.J., Ko, H.S.: Stable but responsive cloth. ACM Trans. Graph. 21(3), 604–611 (2002) CrossRefGoogle Scholar
  7. 7.
    Choi, M.H., Hong, M., Welch, S.: Modeling and simulation of sharp creases. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches, p. 95. ACM, New York (2004) CrossRefGoogle Scholar
  8. 8.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York (1999) CrossRefGoogle Scholar
  9. 9.
    English, E., Bridson, R.: Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27(3), 1–5 (2008) CrossRefGoogle Scholar
  10. 10.
    Garg, A., Grinspun, E., Wardetzky, M., Zorin, D.: Cubic shells. In: SCA ’07: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 91–98. Eurographics Association, Aire-la-Ville (2007) Google Scholar
  11. 11.
    Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers, p. 49. ACM, New York (2007) CrossRefGoogle Scholar
  12. 12.
    Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: SCA ’03: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  13. 13.
    Hong, M., Hyung Choi, M., Jung, S., Welch, S.: Effective constrained dynamic simulation using implicit constraint enforcement. In: International Conference on Robotics and Automation, pp. 4520–4525 (2005) Google Scholar
  14. 14.
    Liu, S., Liu, Q., An, T., Sun, J., Peng, Q.: Physically based simulation of thin-shell objects’ burning. Vis. Comput. 25, 687–696 (2009) CrossRefGoogle Scholar
  15. 15.
    Losasso, F., Irving, G., Guendelman, E., Fedkiw, R.: Melting and burning solids into liquids and gases. IEEE Trans. Vis. Comput. Graph. 12(3), 343–352 (2006) CrossRefGoogle Scholar
  16. 16.
    Melek, Z., Keyser, J.: Driving object deformations from internal physical processes. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, SPM’07, pp. 51–59. ACM, New York (2007) CrossRefGoogle Scholar
  17. 17.
    Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In: IMR, pp. 103–114 (2003) Google Scholar
  18. 18.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007) CrossRefGoogle Scholar
  19. 19.
    Provot, X.: Deformation constraints in a mass–spring model to describe rigid cloth behavior. In: Graphics Interface, pp. 147–154 (1995) Google Scholar
  20. 20.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH ’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 205–214. ACM, New York (1987) CrossRefGoogle Scholar
  21. 21.
    Terzopoulos, D., Platt, J., Fleischer, K.: Heating and melting deformable models (from goop to glop). In: Proc. Graphics Interface ’89, pp. 219–226 (1989) Google Scholar
  22. 22.
    Thomaszewski, B., Wacker, M.: Bending models for thin flexible objects. In: WSCG Short Communication Proceedings, vol. 9 (2006) Google Scholar
  23. 23.
    Volino, P., Magnenat-Thalmann, N.: Simple linear bending stiffness in particle systems. In: SCA ’06: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 101–105. Eurographics Association, Aire-la-Ville (2006) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Dept. of Computer and Radio Communications EngineeringKorea UniversitySeoulKorea
  2. 2.Visual Information ProcessingKorea UniversitySeoulKorea
  3. 3.Dept. of Computer Science & EngineeringKorea UniversitySeoulKorea

Personalised recommendations