Advertisement

The Visual Computer

, Volume 27, Issue 6–8, pp 677–686 | Cite as

Shape-enhanced maximum intensity projection

  • Zhiguang Zhou
  • Yubo TaoEmail author
  • Hai LinEmail author
  • Feng Dong
  • Gordon Clapworthy
Original Article

Abstract

Maximum intensity projection (MIP) displays the voxel with the maximum intensity along the viewing ray, and this offers simplicity in usage, as it does not require a complex transfer function, the specification of which is a highly challenging and time-consuming process in direct volume rendering (DVR). However, MIP also has its inherent limitation, the loss of spatial context and shape information. This paper proposes a novel technique, shape-enhanced maximum intensity projection (SEMIP), to resolve this limitation. Inspired by lighting in DVR to emphasize surface structures, SEMIP searches a valid gradient for the maximum intensity of each viewing ray, and applies gradient-based shading to improve shape and depth perception of structures. As SEMIP may result in the pixel values over the maximum intensity of the display device, a tone reduction technique is introduced to compress the intensity range of the rendered image while preserving the original local contrast. In addition, depth-based color cues are employed to enhance the visual perception of internal structures, and a focus and context interaction is used to highlight structures of interest. We demonstrate the effectiveness of the proposed SEMIP with several volume data sets, especially from the medical field.

Keywords

Maximum intensity projection Phong shading Tone reduction Depth-based color Shape perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrens, U., Ratering, R.: Adding shadows to a texture-based volume renderer. In: VVS ’98: Proceedings of the 1998 IEEE Symposium on Volume Visualization, pp. 39–46. ACM, New York (1998) CrossRefGoogle Scholar
  2. 2.
    Bruckner, S., Gröller, M.E.: Enhancing depth-perception with flexible volumetric halos. IEEE Trans. Vis. Comput. Graph. 13(6), 1344–1351 (2007) CrossRefGoogle Scholar
  3. 3.
    Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3), 775–782 (2009) CrossRefGoogle Scholar
  4. 4.
    Correa, C., Ma, K.L.: Size-based transfer functions: A new volume exploration technique. IEEE Trans. Vis. Comput. Graph. 14(6), 1380–1387 (2008) CrossRefGoogle Scholar
  5. 5.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 369–378. ACM/Addison-Wesley, New York (1997) CrossRefGoogle Scholar
  6. 6.
    Díaz, J., Vázquez, P.: Depth-enhanced maximum intensity projection. In: 8th IEEE/EG International Symposium on Volume Graphics, pp. 93–100 (2010) Google Scholar
  7. 7.
    Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum 22(3), 419–426 (2003) CrossRefGoogle Scholar
  8. 8.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(10), 257–266 (2002) Google Scholar
  9. 9.
    Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: VIS ’00: Proceedings of the conference on Visualization ’00, pp. 195–202. IEEE Computer Society, Los Alamitos (2000) Google Scholar
  10. 10.
    Hauser, H., Mroz, L., Bischi, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Trans. Vis. Comput. Graph. 7(3), 242–252 (2001) CrossRefGoogle Scholar
  11. 11.
    Heidrich, W., McCool, M., Stevens, J.: Interactive maximum projection volume rendering. In: Proceedings of the 6th Conference on Visualization ’95, pp. 11–18. IEEE Computer Society, Washington (1995) Google Scholar
  12. 12.
    Kindlmann, G.: Transfer function in direct volume rendering: design, interface, interaction. In: ACM SIGGRAPH Course Notes (2002) Google Scholar
  13. 13.
    Kindlmann, G., Whitaker, R., Tasdizen, T., Moller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: VIS ’03: Proceedings of the 14th IEEE Visualization 2003, pp. 513–520. IEEE Computer Society, Washington (2003) CrossRefGoogle Scholar
  14. 14.
    Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. Vis. Comput. Graph. 8(3), 270–285 (2002) CrossRefGoogle Scholar
  15. 15.
    Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003) CrossRefGoogle Scholar
  16. 16.
    Ledda, P., Chalmers, A., Troscianko, T., Seetzen, H.: Evaluation of tone mapping operators using a high dynamic range display. ACM Trans. Graph. 24(3), 640–648 (2005) CrossRefGoogle Scholar
  17. 17.
    Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995) CrossRefGoogle Scholar
  18. 18.
    Mora, B., Ebert, D.S.: Low-complexity maximum intensity projection. ACM Trans. Graph. 24(4), 1392–1416 (2005) CrossRefGoogle Scholar
  19. 19.
    Mroz, L., Hauser, H., Gröller, M.E.: Interactive high-quality maximum intensity projection. Comput. Graph. Forum 19(3), 341–350 (2000) CrossRefGoogle Scholar
  20. 20.
    Nagy, Z., Schneider, J., Westermann, R.: Interactive volume illustration. In: Proceedings of Vision, Modeling and Visualization 2002, pp. 497–504 (2002) Google Scholar
  21. 21.
    Rezk-Salama, C., Hadwiger, M., Ropinski, T., Ljung, P.: Advanced illumination techniques for GPU volume ray-casting. In: ACM SIGGRAPH, Course Notes 2009 (2009) Google Scholar
  22. 22.
    Ropinski, T., Steinicke, F., Hinrichs, K.: Visually supporting depth perception in angiography imaging. In: Lecture Notes in Computer Science, vol. 4073, pp. 193–104 (2006) Google Scholar
  23. 23.
    Sato, Y., Shiraga, N., Nakajima, S., Tamura, S., Kikinis, R.: LMIP: Local maximum intensity projection: Comparison of visualization methods using abdominal CT-angiography. J. Comput. Assist. Tomogr. 22(6), 912–917 (1998) CrossRefGoogle Scholar
  24. 24.
    Straka, M., Cervenanský, M., Cruz, A.L., Köchl, A., Srámek, M., Gröller, M.E., Fleischmann, D.: The vesselglyph: Focus and context visualization in CT-angiography. In: IEEE Visualization, pp. 392–385 (2004). Commission for Scientific Visualization, Austrian (2004) Google Scholar
  25. 25.
    Svakhine, N.A., Ebert, D.S., Andrews, W.M.: Illustration-inspired depth enhanced volumetric medical visualization. IEEE Trans. Vis. Comput. Graph. 15(1), 77–86 (2009) CrossRefGoogle Scholar
  26. 26.
    Wallis, J., Miller, T., Lerner, C., Kleerup, E.: Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8(4), 297–230 (1989) CrossRefGoogle Scholar
  27. 27.
    Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H.: High dynamic range volume visualization. In: Proceedings of the Conference on Visualization, pp. 327–334. IEEE Computer Society, Washington (2005) Google Scholar
  28. 28.
    Yuan, X., Nguyen, M.X., Chen, B., Porter, D.H.: HDR VolVis: High dynamic range volume visualization. IEEE Trans. Vis. Comput. Graph. 12(4), 433–445 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina
  2. 2.University of BedfordshireLutonUK

Personalised recommendations