Advertisement

The Visual Computer

, Volume 27, Issue 6–8, pp 495–505 | Cite as

Partition of unity parametrics: a framework for meta-modeling

  • Adam RunionsEmail author
  • Faramarz F. Samavati
Original Article

Abstract

We propose Partition of Unity Parametrics (PUPs), a natural extension of NURBS that maintains affine invariance. PUPs replace the weighted basis functions of NURBS with arbitrary weight-functions (WFs). By choosing appropriate WFs, PUPs yield a comprehensive geometric modeling framework, accounting for a variety of beneficial properties, such as local support, specified smoothness, arbitrary sharp features and approximating or interpolating curves. Additionally, we consider interactive specification of WFs to fine-tune the character of curves and generate non-trivial effects. This serves as a basis for a system where users model the tools used for modeling, here weight-functions, in tandem with the model itself, which we dub a meta-modeling system. PUP curves and surfaces are considered in detail. Curves illustrate basic concepts that apply directly to surfaces. For surfaces, the advantages of PUPs are more pronounced; permitting non-tensor WFs and direct parameter space manipulations. These features allow us to address two difficult geometric modeling problems (sketching features onto surfaces and converting planar meshes into parametric surfaces) in a conceptually and computationally simple way.

Keywords

Meta-modeling Parametric curves and surfaces Sketch-based modeling Geometric modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barsky, B.: Computer Graphics and Geometric Modeling using Beta-Splines. Springer, Berlin (1988) zbMATHGoogle Scholar
  2. 2.
    de Boor, C.: A Practical Guide to Splines (revised edn.). Springer, Berlin (1978) zbMATHGoogle Scholar
  3. 3.
    Brunn, M., Sousa, M., Samavati, F.: Capturing and re-using artistic styles with multiresolution analysis. Int. J. Image Graph. 7(4), 593–615 (2007) CrossRefGoogle Scholar
  4. 4.
    Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cashman, T.J., Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes. In: SIGGRAPH’09, pp. 1–9 (2009) Google Scholar
  6. 6.
    Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables, vol. 571, pp. 85–100 (1977) CrossRefGoogle Scholar
  7. 7.
    Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proceedings of SIGGRAPH’96, pp. 325–334 (1996) Google Scholar
  8. 8.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Methods Eng. 15(11), 1691–1704 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grimm, C.M., Hughes, J.F.: Modeling surfaces of arbitrary topology using manifolds. In: Proceedings of SIGGRAPH’95, pp. 359–368 (1995) Google Scholar
  12. 12.
    Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: theory and practice. In: SIGGRAPH 2007 Course Notes, pp. 1–87 (2007) Google Scholar
  13. 13.
    Li, Q., Tian, J.: 2d piecewise algebraic splines for implicit modeling. ACM Trans. Graph. 28(2), 1–19 (2009) CrossRefGoogle Scholar
  14. 14.
    Meyer, M., Barr, A., Lee, H., Desbrun, M.: Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7(1), 13–22 (2002) zbMATHGoogle Scholar
  15. 15.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Fibermesh: Designing free-form surfaces with 3D curves. In: SIGGRAPH’07 p. 41. (2007) Google Scholar
  16. 16.
    Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003) CrossRefGoogle Scholar
  17. 17.
    Olsen, L., Samavati, F., Sousa, M., Jorge, J.: Sketch-based mesh augmentation. In: Proceedings of the Sketch-Base Interfaces and Modeling (SBIM) Workshop (2005) Google Scholar
  18. 18.
    Olsen, L., Samavati, F., Sousa, M., Jorge, J.: Sketch-based modeling: a survey. Comput. Graph. 33(1), 85–103 (2009) CrossRefGoogle Scholar
  19. 19.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997) Google Scholar
  20. 20.
    Piegl, L., Tiller, W.: Filling n-sided regions with NURBS patches. Vis. Comput. 15(2), 77–89 (1999) zbMATHCrossRefGoogle Scholar
  21. 21.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003) CrossRefGoogle Scholar
  22. 22.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, pp. 517–524 (1968) CrossRefGoogle Scholar
  23. 23.
    Turk, G., O’ Brien, J.: Variational implicit surfaces. Tech. rep., Georgia Institute of Technology (1999) Google Scholar
  24. 24.
    Wang, Q., Hua, W., Guiqing, L., Bao, H.: Generalized NURBS curves and surfaces. In: Geometric Modeling and Processing, pp. 365–368 (2004) CrossRefGoogle Scholar
  25. 25.
    Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. In: SIGGRAPH’04, pp. 271–275 (2004) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CalgaryNW CalgaryCanada

Personalised recommendations