The Visual Computer

, Volume 27, Issue 6–8, pp 531–541 | Cite as

Evaluation of Boolean operations between free-form solids using extended simplicial chains and PN triangles

  • Á. L. GarcíaEmail author
  • J. Ruiz de Miras
  • F. R. Feito
Original Article


This paper presents a method to evaluate Boolean operations between free-form solids modeled using Extended Simplicial Chains (ESCs). The ESC model is a formal system to represent not only the boundary, but also the volume of free-form solids, that allows the development of simple and robust algorithms. In this implementation of the ESC model, the free-form solids and the results of the operations are bounded by PN triangles and represented by ESCs, and the surface intersection and trimming are computed using adaptive subdivision of the patches and a point in solid test specifically designed for ESCs.


Free-form solid modeling Boolean operation Extended simplicial chain PN triangle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ATI Technologies Inc.: Truform white paper (2001) Google Scholar
  2. 2.
    Aziz, N., Bata, R.: Bézier surface/surface intersection. IEEE Comput. Graph. Appl. 10, 50–58 (1990) CrossRefGoogle Scholar
  3. 3.
    Bajaj, C., Paoluzzi, A., Portuesi, S., Lei, N., Zhao, W.: Boolean operations with prism algebraic patches. Comput. Aided Des. Appl. 5(5), 730–742 (2008) Google Scholar
  4. 4.
    Biermann, H., Kristjansson, D., Zorin, D.: Approximate boolean operations on free-form solids. In: ACM Siggraph, Los Angeles, USA, pp. 185–194 (2001) Google Scholar
  5. 5.
    Farin, G.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Farouki, R., Han, C., Hass, J., Sederberg, T.: Topologically consistent trimmed surface approximations based on triangular patches. Comput. Aided Geom. Des. 21, 459–478 (2004) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Feito, F., Rivero, M.: Geometric modelling based on simplicial chains. Comput. Graph. 22(5), 611–619 (1998) CrossRefGoogle Scholar
  8. 8.
    García, Á.L.: Modelado de sólidos de forma libre basado en superficies paramétricas triangulares de grado bajo (includes extended English summary). Ph.D. thesis, Universidad de Granada (2007).*spi
  9. 9.
    García, Á.L., Ruiz, J., Feito, F.: Free-form solid modelling based on extended simplicial chains using triangular Bézier patches. Comput. Graph. 27(1), 27–39 (2003) CrossRefGoogle Scholar
  10. 10.
    García, Á.L., Ruiz, J., Feito, F.: Point in solid test for free-form solids defined with triangular Bézier patches. Vis. Comput. 20(5), 298–313 (2004) CrossRefGoogle Scholar
  11. 11.
    García, Á.L., Ruiz, J., Feito, F.: Algebraic representation of CSG solids built from free-form primitives. In: Skala, V. (ed.) WSCG’2005 Short Papers, Plzen, Czech Republic, pp. 1–4 (2005) Google Scholar
  12. 12.
    García, Á.L., Ruiz, J., Feito, F.: Adaptive trimming of cubic triangular Bézier patches. In: Brunet, P., Correia, N., Baranoski, G. (eds.) SIACG’2006 Proceedings, Santiago de Compostela, Spain, pp. 149–158 (2006) Google Scholar
  13. 13.
    Grandine, T., Klein, F.: A new approach to the surface intersection problem. Comput. Aided Geom. Des. 14, 111–134 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hable, J., Rossignac, J.: Blister: GPU-based rendering of boolean combinations of free-form triangulated shapes. ACM Trans. Graph. 24(3), 1024–1031 (2005). Proceedings of ACM Siggraph CrossRefGoogle Scholar
  15. 15.
    Hass, J., Farouki, R., Han, C., Song, X., Sederberg, T.: Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme. Adv. Comput. Math. 27(1), 1–26 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Heo, H.S., Kim, M.S., Elber, G.: The intersection of two ruled surfaces. Comput. Aided Des. 32, 33–50 (1999) CrossRefGoogle Scholar
  17. 17.
    Jordan, C.: Course D’Analyse. École Polytechnique de Paris, Paris (1887) Google Scholar
  18. 18.
    Keyser, J.: Exact boundary evaluation for curved solids. Ph.D. thesis, University of North Carolina at Chapel Hill (2000) Google Scholar
  19. 19.
    Keyser, J., Culver, T., Foskey, M., Krishnan, M., Manocha, D.: ESOLID—a system for exact boundary evaluation. Comput. Aided Des. 36(2), 175–193 (2004) CrossRefGoogle Scholar
  20. 20.
    Krishnamurthy, A., Khardekar, R., McMains, S., Haller, K., Elber, G.: Performing efficient NURBS modeling operations on the GPU. IEEE Trans. Vis. Comput. Graph. 15(4), 530–543 (2009) CrossRefGoogle Scholar
  21. 21.
    Krishnan, S.: Efficient and accurate boundary evaluation algorithms for boolean combinations of sculptured solids. Ph.D. thesis, University of North Carolina at Chapel Hill (1997) Google Scholar
  22. 22.
    Krishnan, S., Manocha, D., Gopi, M., Culver, T., Keyser, J.: BOOLE: A boundary evaluation system for Boolean combinations of sculptured solids. Int. J. Comput. Geom. Appl. 11(1), 105–144 (2001) zbMATHCrossRefGoogle Scholar
  23. 23.
    Li, X., Jiang, H., Chen, S., Wang, X.: An efficient surface-surface intersection algorithm based on geometry characteristics. Comput. Graph. 28, 527–537 (2004) CrossRefGoogle Scholar
  24. 24.
    Li, Y.Q., Ke, Y.L., Li, W., Peng, Q.S., Tan, J.R.: Termination criterion for subdivision of triangular Bézier patch. Comput. Graph. 26, 67–74 (2002) CrossRefGoogle Scholar
  25. 25.
    Linsen, L.: Netbased modelling. In: Spring Conference on Computer Graphics (SCCG), Budmerice, Slovakia, pp. 259–266 (2000) Google Scholar
  26. 26.
    Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Comput. Aided Geom. Des. 18(5), 463–481 (2001) zbMATHCrossRefGoogle Scholar
  27. 27.
    Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann, San Mateo (2003) Google Scholar
  28. 28.
    Möller, T.: A fast triangle-triangle intersection test. J. Graph. Tools 2, 25–30 (1997) Google Scholar
  29. 29.
    Mukundan, H.: Surface-surface intersection with validated error bounds. Master’s thesis, Massachusetts Institute of Technology (2005) Google Scholar
  30. 30.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  31. 31.
    Pasko, G., Pasko, A.: Trimming implicit surfaces. Vis. Comput. 20(7), 437–447 (2004) CrossRefGoogle Scholar
  32. 32.
    Patrikalakis, N., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002) zbMATHGoogle Scholar
  33. 33.
    Patrikalakis, N., Maekawa, T., Ko, K., Mukundan, H.: Surface to surface intersections. Comput. Aided Des. Appl. 1, 449–458 (2004) Google Scholar
  34. 34.
    Plate, J., Holtkaemper, T., Froehlich, B.: A flexible multi-volume shader framework for arbitrarily intersecting multi-resolution datasets. IEEE Trans. Vis. Comput. Graph. 13(6), 1584–1591 (2007) CrossRefGoogle Scholar
  35. 35.
    Requicha, A., Voelcker, H.: Constructive solid geometry. Tech. Memo 25, Production Automation Project, Univ. Rochester, Rochester, NY (1977) Google Scholar
  36. 36.
    Rossignac, J.: Specification, representation, and construction of non-manifold geometric structures. Lecture in Course 29 on Representations of Geometry for Computer Graphics at SIGGRAPH (1996) Google Scholar
  37. 37.
    Ruiz, J.: Free-form solid modeling. Ph.D. thesis, Universidad de Granada, Granada, Spain (2001) Google Scholar
  38. 38.
    Ruiz, J., Feito, F.: Mathematical free-form solid modeling based on extended simplicial chains. In: WSCG ’99: VII Conference on Computer Graphics, Visualization and Interactive Digital Media, Plzen-Bory, Czech Republic, pp. 241–248 (1999) Google Scholar
  39. 39.
    Schwarz, M., Stamminger, M.: Fast GPU-based adaptive tessellation with CUDA. Comput. Graph. Forum 28(2), 365–374 (2009) CrossRefGoogle Scholar
  40. 40.
    Seidel, H.: General subdivision theorem for Bézier triangles. In: Mathematical Methods in Computer Aided Geometric Design, pp. 573–581. Academic Press, New York (1989) Google Scholar
  41. 41.
    Song, X., Sederberg, T., Zheng, J., Farouki, R., Hass, J.: Linear perturbation methods for topologically consistent representations of free-form surface intersections. Comput. Aided Geom. Des. 21(3), 303–319 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Vlachos, A., Peters, J., Boyd, C., Mitchell, J.: Curved PN triangles. In: 2001 ACM Symposium on Interactive 3D Graphics, pp. 159–166. ACM Press, New York (2001) CrossRefGoogle Scholar
  43. 43.
    Woo, Y.: Fast cell-based decomposition and applications to solid modeling. Comput. Aided Des. 35(11), 969–977 (2003) CrossRefGoogle Scholar
  44. 44.
    Zhang, X.: Optimal geometric trimming of B-Spline surfaces for aircraft design. Ph.D. thesis, Virginia Polytechnic Institute and State University (2005) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Á. L. García
    • 1
    Email author
  • J. Ruiz de Miras
    • 1
  • F. R. Feito
    • 1
  1. 1.Departamento de InformáticaUniversidad de JaénJaénSpain

Personalised recommendations