The Visual Computer

, 27:759 | Cite as

Image-space hierarchical coherence buffer

Original Article


Indirect illumination plays an important role in global illumination. However, computing indirect illumination is a time-consuming process and needs to be approximated to achieve interactive performance. Indirect illumination varies rather slowly across the surface. This leads to the idea of computing indirect illumination sparsely in the scene and interpolating the result. This paper presents a hierarchical structure, which enables efficient sampling. The hierarchy is constructed in the image space by exploiting coherences among the screen-space pixels. From the hierarchy, samples are chosen, each of which represents a group of coherent pixels. This paper presents two methods of utilizing the samples for indirect lighting computation. The methods produce plausible lighting results and show high performances. The proposed algorithms run entirely in the image space and are easy to implement in contemporary graphic hardware.


Image-based algorithm Indirect lighting Global illumination 


  1. 1.
    Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: I3D ’05, pp. 203–231 (2005) Google Scholar
  2. 2.
    Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: I3D ’06, pp. 93–100 (2006) Google Scholar
  3. 3.
    Debattista, K., Dubla, P., Banterle, F., Santos, L.P., Chalmers, A.: Instant caching for interactive global illumination. Comput. Graph. Forum 28(8), 2216–2228 (2009) CrossRefGoogle Scholar
  4. 4.
    Gassenbauer, V., Křivánek, J., Bouatouch, K.: Spatial directional radiance caching. Comput. Graph. Forum 28(4), 1189–1198 (2009) CrossRefGoogle Scholar
  5. 5.
    Gautron, P., Bouatouch, K., Pattanaik, S.: Temporal radiance caching. IEEE Trans. Vis. Comput. Graph. 13(5), 891–901 (2007) CrossRefGoogle Scholar
  6. 6.
    Gautron, P., Křivánek, J., Bouatouch, K., Pattanaik, S.: Radiance cache splatting: a GPU-friendly global illumination algorithm. In: SIGGRAPH ’05 Sketches, p. 36 (2005) CrossRefGoogle Scholar
  7. 7.
    Herzog, R., Myszkowski, K., Seidel, H.P.: Anisotropic radiance-cache splatting for efficiently computing high-quality global illumination with lightcuts. Comput. Graph. Forum 28(2), 259–268 (2009) CrossRefGoogle Scholar
  8. 8.
    Keller, A.: Instant radiosity. In: SIGGRAPH ’97, pp. 49–56 (1997) CrossRefGoogle Scholar
  9. 9.
    Křivánek, J., Gautron, P., Pattanaik, S., Bouatouch, K.: Radiance caching for efficient global illumination computation. IEEE Trans. Vis. Comput. Graph. 11(5), 550–561 (2005) CrossRefGoogle Scholar
  10. 10.
    Laine, S., Karras, T.: Efficient sparse voxel octrees. In: I3D ’10, pp. 55–63 (2010) CrossRefGoogle Scholar
  11. 11.
    Nichols, G., Penmatsa, R., Wyman, C.: Interactive, multiresolution image-space rendering for dynamic area lighting. Comput. Graph. Forum 29(4), 1279–1288 (2010) CrossRefGoogle Scholar
  12. 12.
    Nichols, G., Shopf, J., Wyman, C.: Hierarchical image-space radiosity for interactive global illumination. Comput. Graph. Forum 28(4), 1141–1149 (2009) CrossRefGoogle Scholar
  13. 13.
    Nichols, G., Wyman, C.: Multiresolution splatting for indirect illumination. In: I3D ’09, pp. 83–90 (2009) CrossRefGoogle Scholar
  14. 14.
    Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. In: SIGGRAPH Asia ’09, pp. 1–8 (2009) CrossRefGoogle Scholar
  15. 15.
    Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. 27(5), 1–8 (2008) CrossRefGoogle Scholar
  16. 16.
    Saito, T., Takahashi, T.: Comprehensible rendering of 3-d shapes. SIGGRAPH Comput. Graph. 24(4), 197–206 (1990) CrossRefGoogle Scholar
  17. 17.
    Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer generated films. ACM Trans. Graph. 23(3), 469–476 (2004) CrossRefGoogle Scholar
  18. 18.
    Tawara, T., Myszkowski, K., Seidel, H.P.: Exploiting temporal coherence in final gathering for dynamic scenes. In: CGI ’04, pp. 110–119 (2004) Google Scholar
  19. 19.
    Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., Greenberg, D.P.: Lightcuts: a scalable approach to illumination. ACM Trans. Graph. 24(3), 1098–1107 (2005) CrossRefGoogle Scholar
  20. 20.
    Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection. In: SIGGRAPH ’88, pp. 85–92 (1988) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Korea UniversitySeoulKorea

Personalised recommendations