The Visual Computer

, Volume 27, Issue 6–8, pp 519–529 | Cite as

Robust interactive cutting based on an adaptive octree simulation mesh

  • Martin SeilerEmail author
  • Denis Steinemann
  • Jonas Spillmann
  • Matthias Harders
Original Article


We present an adaptive octree based approach for interactive cutting of deformable objects. Our technique relies on efficient refine- and node split-operations. These are sufficient to robustly represent cuts in the mechanical simulation mesh. A high-resolution surface embedded into the octree is employed to represent a cut visually. Model modification is performed in the rest state of the object, which is accomplished by back-transformation of the blade geometry. This results in an improved robustness of our approach. Further, an efficient update of the correspondences between simulation elements and surface vertices is proposed. The robustness and efficiency of our approach is underlined in test examples as well as by integrating it into a prototype surgical simulator.


Physically-based modeling Cutting Adaptive simulation Octree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bielser, D., Gross, M.H.: Interactive simulation of surgical cuts. In: Proc. of the 8th Pacific Conference on Computer Graphics and Applications, p. 116 (2000) CrossRefGoogle Scholar
  2. 2.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.: A multiresolution framework for dynamic deformations. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 41–47 (2002) CrossRefGoogle Scholar
  3. 3.
    Delingette, H., Cotin, S., Ayache, N.: A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In: Proceedings of the Computer Animation, CA ’99, p. 70 (1999) CrossRefGoogle Scholar
  4. 4.
    Dequidt, J., Marchal, D., Grisoni, L.: Time-critical animation of deformable solids: Collision detection and deformable objects. Comput. Animat. Virtual Worlds 16(3-4), 177–187 (2005) CrossRefGoogle Scholar
  5. 5.
    Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans. Vis. Comput. Graph. 99, 1077–2626 (2011) Google Scholar
  6. 6.
    Fierz, B., Spillmann, J., Harders, M.: Stable explicit integration of deformable objects by filtering high modal frequencies. J. WSCG 18, 81–88 (2010) Google Scholar
  7. 7.
    Forest, C., Delingette, H., Ayache, N.: Removing tetrahedra from a manifold mesh. In: CA ’02: Proceedings of the Computer Animation, p. 225 (2002) Google Scholar
  8. 8.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 209–216 (1997) CrossRefGoogle Scholar
  9. 9.
    Grinspun, E., Krysl, P., Schröder, P.: CHARMS: a simple framework for adaptive simulation. ACM Trans. Graph. (Proc. SIGGRAPH) 21(3), 281–290 (2002) CrossRefGoogle Scholar
  10. 10.
    Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30, 99–112 (2010) CrossRefGoogle Scholar
  11. 11.
    Irving, G., Teran, J., Fedkiw, R.: Invertible finite elements for robust simulation of large deformation. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 131–140 (2004) CrossRefGoogle Scholar
  12. 12.
    Jeřábková, L., Kuhlen, T.: Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput. Graph. Appl. 29(2), 61–71 (2009) CrossRefGoogle Scholar
  13. 13.
    Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., Gross, M.: Enrichment textures for detailed cutting of shells. In: ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, pp. 50:1–50:10 (2009) Google Scholar
  14. 14.
    Kaufmann, P., Martin, S., Botsch, M., Gross, M.H.: Flexible simulation of deformable models using discontinuous Galerkin fem. Graph. Models 71(4), 153–167 (2009) CrossRefGoogle Scholar
  15. 15.
    Labelle, F., Shewchuk, J.R.: Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3), 57 (2007) CrossRefGoogle Scholar
  16. 16.
    Gissler, M.T.M., Ihmsen, M.: Efficient uniform grids for collision handling in medical simulators. In: International Conference on Computer Graphics Theory and Applications (GRAPP) (2011) Google Scholar
  17. 17.
    Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.H.: Polyhedral finite elements using harmonic basis functions. Comput. Graph. Forum 27(5), 1521–1529 (2008) CrossRefGoogle Scholar
  18. 18.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004) CrossRefGoogle Scholar
  19. 19.
    Mor, A.B., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: MICCAI ’00: Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 598–607 (2000) CrossRefGoogle Scholar
  20. 20.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. (Proc. SIGGRAPH) 24(3), 471–478 (2005) CrossRefGoogle Scholar
  21. 21.
    Nesme, M., Faure, F., Payan, Y.: Hierarchical multi-resolution finite element model for soft body simulation. In: 2nd Workshop on Computer Assisted Diagnosis and Surgery, March, p. 2006 (2006) Google Scholar
  22. 22.
    Nesme, M., Kry, P.G., Jerábková, L., Faure, F.: Preserving topology and elasticity for embedded deformable models. In: SIGGRAPH ’09: ACM SIGGRAPH 2009 papers (2009) Google Scholar
  23. 23.
    Nienhuys, H.-W., van der Stappen, A.F.: A surgery simulation supporting cuts and finite element deformation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). Lectures Notes in Computer Science, vol. 2208, pp. 145–152. Springer, Berlin (2001) Google Scholar
  24. 24.
    Pascucci, V., Frank, R.J.: Global static indexing for real-time exploration of very large regular grids. In: Proceedings of the 2001 ACM/IEEE conference on Supercomputing, Supercomputing ’01, p. 2-2 (2001) CrossRefGoogle Scholar
  25. 25.
    Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pp. 957–964 (2005) CrossRefGoogle Scholar
  26. 26.
    Pietroni, N., Ganovelli, F., Cignoni, P., Scopigno, R.: Splitting cubes: a fast and robust technique for virtual cutting. Vis. Comput. 25, 227–239 (2009) CrossRefGoogle Scholar
  27. 27.
    Seiler, M., Spillmann, J., Harders, M.: A threefold representation for the adaptive simulation of embedded deformable objects in contact. J. WSCG 18(1–3), 89–96 (2010) Google Scholar
  28. 28.
    Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 73–80 (2007) Google Scholar
  29. 29.
    Sifakis, E., Shinar, T., Irving, G., Fedkiw, R.: Hybrid simulation of deformable solids. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 81–90 (2007) Google Scholar
  30. 30.
    Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: VR ’06: Proceedings of the IEEE Conference on Virtual Reality, pp. 35–42. IEEE Computer Society, Los Alamitos (2006) Google Scholar
  31. 31.
    Steinemann, D., Otaduy, M., Gross, M.: Fast adaptive shape matching deformations. In: Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2008) Google Scholar
  32. 32.
    Steinemann, D., Otaduy, M.A., Gross, M.: Fast arbitrary splitting of deforming objects. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63–72 (2006) Google Scholar
  33. 33.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278 (1988) CrossRefGoogle Scholar
  34. 34.
    Wicke, M., Botsch, M., Gross, M.: A finite element method on convex polyhedra. Comput. Graph. Forum (Proc. Eurographics) 26(3), 355–364 (2007) CrossRefGoogle Scholar
  35. 35.
    Wojtan, C., Thürey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM Trans. Graph. 28(3), 1–10 (2009) CrossRefGoogle Scholar
  36. 36.
    Wojtan, C., Turk, G.: Fast viscoelastic behavior with thin features. ACM Trans. Graph. (Proc. SIGGRAPH) (2008) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Martin Seiler
    • 1
    Email author
  • Denis Steinemann
    • 2
  • Jonas Spillmann
    • 1
  • Matthias Harders
    • 1
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.VirtaMed AGZürichSwitzerland

Personalised recommendations