The Visual Computer

, 27:665 | Cite as

Efficient multi-view ray tracing using edge detection and shader reuse

  • Magnus AnderssonEmail author
  • Björn Johnsson
  • Jacob Munkberg
  • Petrik Clarberg
  • Jon Hasselgren
  • Tomas Akenine-Möller
Original Article


Stereoscopic rendering and 3D stereo displays are quickly becoming mainstream. The natural extension is autostereoscopic multi-view displays which, by the use of parallax barriers or lenticular lenses, can accommodate many simultaneous viewers without the need for active or passive glasses. As these displays, for the foreseeable future, will support only a rather limited number of views, there is a need for high-quality interperspective antialiasing. We present a specialized algorithm for efficient multi-view image generation from a camera line using ray tracing, which builds on previous methods for multi-dimensional adaptive sampling and reconstruction of light fields. We introduce multi-view silhouette edges to detect sharp geometrical discontinuities in the radiance function. These are used to significantly improve the quality of the reconstruction. In addition, we exploit shader coherence by computing analytical visibility between shading points and the camera line, and by sharing shading computations over the camera line.


Multi-view Ray tracing Adaptive sampling Edge detection 


  1. 1.
    Adelson, S., Hodges, L.F.: Stereoscopic ray-tracing. Vis. Comput. 10(3), 127–144 (1993) CrossRefGoogle Scholar
  2. 2.
    Apodaca, A., Gritz, L.: Advanced RenderMan: Creating CGI for Motion Pictures. Morgan Kaufmann, San Mateo (2000) Google Scholar
  3. 3.
    Badt, S.J.: Two algorithms for taking advantage of temporal coherence in ray tracing. Vis. Comput. 4(3), 123–132 (1988) zbMATHCrossRefGoogle Scholar
  4. 4.
    Bala, K., Walter, B., Greenberg, D.P.: Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. 22, 631–640 (2003) CrossRefGoogle Scholar
  5. 5.
    Chai, J.X., Tong, X., Chan, S.C., Shum, H.Y.: Plenoptic sampling. In: Proceedings of ACM SIGGRAPH, pp. 307–318 (2000) Google Scholar
  6. 6.
    Chen, S.E., Williams, L.: View interpolation for image synthesis. In: Proceedings of ACM SIGGRAPH, pp. 279–288 (1993) Google Scholar
  7. 7.
    Crow, F.: Shadow algorithms for computer graphics. In: Computer Graphics, Proceedings of ACM SIGGRAPH, pp. 242–248 (1977) Google Scholar
  8. 8.
    Drettakis, G., Fiume, E.: A fast shadow algorithm for area light sources using backprojection. In: Proceedings of ACM SIGGRAPH, pp. 223–230 (1994) CrossRefGoogle Scholar
  9. 9.
    Egan, K., Tseng, Y.T., Holzschuch, N., Durand, F., Ramamoorthi, R.: Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28(3), 93 (2009) CrossRefGoogle Scholar
  10. 10.
    Ezell, J.D., Hodges, L.F.: Some preliminary results on using spatial locality to speed up ray tracing of stereoscopic images. In: Stereoscopic Displays and Applications. Proceedings of SPIE, vol. 1256, pp. 298–306 (1990) Google Scholar
  11. 11.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1996) Google Scholar
  12. 12.
    Hachisuka, T., Jarosz, W., Weistroffer, R., Dale, K.G.H., Zwicker, M., Jensen, H.: Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27(3), 33 (2008) CrossRefGoogle Scholar
  13. 13.
    Halle, M.: Holographic stereograms as discrete imaging systems. In: Practical Holography VIII. Proceedings of SPIE, vol. 2176, pp. 73–84 (1994) Google Scholar
  14. 14.
    Halle, M.W.: Multiple viewpoint rendering for three-dimensional displays. Ph.D. thesis, MIT (1997) Google Scholar
  15. 15.
    Hasselgren, J., Akenine-Möller, T.: An efficient multi-view rasterization architecture. In: Eurographics Symposium on Rendering, pp. 61–72 (2006) Google Scholar
  16. 16.
    Havran, V., Damez, C., Myszkowski, K., Seidel, H.P.: An efficient spatio-temporal architecture for animation rendering. In: ACM SIGGRAPH Sketches & Applications (2003) Google Scholar
  17. 17.
    Igehy, H.: Tracing ray differentials. In: Proceedings of ACM SIGGRAPH, pp. 179–186 (1999) Google Scholar
  18. 18.
    Isaksen, A., McMillan, L., Gortler, S.: Dynamically reparameterized light fields. In: Proceedings of ACM SIGGRAPH, pp. 297–306 (2000) Google Scholar
  19. 19.
    Javidi, B., Okano, F.: Three-Dimensional Television, Video, and Display Technologies. Springer, Berlin (2002) Google Scholar
  20. 20.
    Kartch, D.: Efficient rendering and compression for full-parallax computer-generated holographic stereograms. Ph.D. thesis, Cornell University (2000) Google Scholar
  21. 21.
    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of ACM SIGGRAPH, pp. 13–42 (1996) Google Scholar
  22. 22.
    Mark, W.R., McMillan, L., Bishop, G.: Post-rendering 3D warping. In: Symposium on Interactive 3D Graphics, pp. 7–16 (1997) CrossRefGoogle Scholar
  23. 23.
    Max, N., Ohsaki, K.: Rendering trees from precomputed Z-buffer views. In: Eurographics Rendering Workshop, pp. 45–54 (1995) Google Scholar
  24. 24.
    Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Mateo (2004) Google Scholar
  25. 25.
    Ramachandra, V., Zwicker, M., Nguyen, T.: Display dependent coding for 3D video on automultiscopic displays. In: IEEE International Conference on Image Processing, pp. 2436–2439 (2008) CrossRefGoogle Scholar
  26. 26.
    Shade, J., Gortler, S., He, L.w., Szeliski, R.: Layered depth images. In: Proceedings of ACM SIGGRAPH, pp. 231–242 (1998) Google Scholar
  27. 27.
    Stewart, J., Yu, J., Gortler, S., McMillan, L.: A new reconstruction filter for undersampled light fields. In: Eurographics Symposium on Rendering, pp. 150–156 (2003) Google Scholar
  28. 28.
    Sung, K., Pearce, A., Wang, C.: Spatial-temporal antialiasing. IEEE Trans. Vis. Comput. Graph. 8(2), 144–153 (2002) CrossRefGoogle Scholar
  29. 29.
    Zhang, C., Chen, T.: Generalized plenoptic sampling. Tech. Rep. AMP01-06, Carnegie Mellon (2001) Google Scholar
  30. 30.
    Zhang, C., Chen, T.: Spectral analysis for sampling image-based rendering data. IEEE Trans. Circuits Syst. Video Technol. 13(11), 1038–1050 (2003) CrossRefGoogle Scholar
  31. 31.
    Zwicker, M., Matusik, W., Durand, F., Pfister, H.: Antialiasing for automultiscopic 3D displays. In: Eurographics Symposium on Rendering, pp. 73–82 (2006) Google Scholar
  32. 32.
    Zwicker, M., Yea, S., Vetro, A., Forlines, C., Matusik, W., Pfister, H.: Display pre-filtering for multi-view video compression. In: International Conference on Multimedia (ACM Multimedia), pp. 1046–1053 (2007) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Magnus Andersson
    • 1
    • 2
    Email author
  • Björn Johnsson
    • 1
    • 2
  • Jacob Munkberg
    • 1
    • 2
  • Petrik Clarberg
    • 1
    • 2
  • Jon Hasselgren
    • 1
    • 2
  • Tomas Akenine-Möller
    • 1
    • 2
  1. 1.Lund UniversityLundSweden
  2. 2.Intel CorporationLundSweden

Personalised recommendations