The Visual Computer

, Volume 27, Issue 9, pp 843–852 | Cite as

Landmark-free posture invariant human shape correspondence

  • Stefanie Wuhrer
  • Chang Shu
  • Pengcheng Xi
Original Article


We consider the problem of computing accurate point-to-point correspondences among a set of human bodies in varying postures using a landmark-free approach. The approach learns the locations of the anthropometric landmarks present in a database of human models in strongly varying postures and uses this knowledge to automatically predict the locations of these anthropometric landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a rigged template model and the newly available scan.


Shape correspondence Template fitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiger, D., Mitra, N., Cohen-Or, D.: 4-points congruent sets for robust surface registration. ACM Trans. Graph. 27(3), 1–10 (2008). Proceedings of SIGGRAPH CrossRefGoogle Scholar
  2. 2.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22(3), 587–594 (2003). Proceedings of SIGGRAPH CrossRefGoogle Scholar
  3. 3.
    Allen, B., Curless, B., Popović, Z., Hertzmann, A.: Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 147–156 (2006) Google Scholar
  4. 4.
    Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. ACM Trans. Graph. 24(3), 408–416 (2005). Proceedings of SIGGRAPH CrossRefGoogle Scholar
  5. 5.
    Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions. In: Symposium on Discrete Algorithms, pp. 271–280 (1993) Google Scholar
  6. 6.
    Azouz, Z.B., Shu, C., Mantel, A.: Automatic locating of anthropometric landmarks on 3D human models. In: 3D Data Processing, Visualization and Transmission (2006) Google Scholar
  7. 7.
    Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26(3) (2007). Proceedings of SIGGRAPH Google Scholar
  8. 8.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992) CrossRefGoogle Scholar
  9. 9.
    Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of SIGGRAPH, pp. 187–194 (1999) Google Scholar
  10. 10.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. PNAS 103(5), 1168–1172 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chang, W., Zwicker, M.: Automatic registration for articulated shapes. Comput. Graph. Forum (Special Issue of SGP 2008) 27(5), 1459–1468 (2008) CrossRefGoogle Scholar
  12. 12.
    Chang, W., Zwicker, M.: Range scan registration using reduced deformable models. Comput. Graph. Forum (Special Issue of Eurographics 2009) 28(2) (2009) Google Scholar
  13. 13.
    Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, New York (2002) Google Scholar
  14. 14.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003) CrossRefGoogle Scholar
  15. 15.
    Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.-P.: Motion capture using joint skeleton tracking and surface estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2009) Google Scholar
  16. 16.
    Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, p. 197 (2005) Google Scholar
  17. 17.
    Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., Seidel, H.-P.: A statistical model of human pose and body shape. Comput. Graph. Forum (Special Issue of Eurographics 2008) 2(28) (2009) Google Scholar
  18. 18.
    Huang, Q., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum (Special Issue of SGP 2008) 27(5) (2008) Google Scholar
  19. 19.
    Jain, V., Zhang, H., van Kaick, O.: Non-rigid spectral correspondence of triangle meshes. IJSM 13(1), 101–124 (2007) zbMATHGoogle Scholar
  20. 20.
    Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. Comput. Graph. Forum 27(5) (2008) Google Scholar
  21. 21.
    Liu, D.C., Nocedal, J.: On the limited memory method for large scale optimization. Math. Program. B 45, 503–528 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Pauly, M., Mitra, N., Giesen, J., Gross, M., Guibas, L.: Example-based 3d scan completion. In: Symposium on Geometry Processing, p. 23 (2005) Google Scholar
  23. 23.
    Robinette, K., Daanen, H., Paquet, E.: The CAESAR project: A 3-D surface anthropometry survey. In: 3-D Digital Imaging and Modeling, pp. 180–186 (1999) Google Scholar
  24. 24.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Conference on 3D Digital Imaging and Modeling, June 2001 Google Scholar
  25. 25.
    van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Eurographics State-of-the-Art Report (2010) Google Scholar
  26. 26.
    Wuhrer, S., Azouz, Z.B., Shu, C.: Semi-automatic prediction of landmarks on human models in varying poses. In: Canadian Conference on Computer and Robot Vision (2010) Google Scholar
  27. 27.
    Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum (Special Issue of SGP 2008) 27(5) (2008) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.National Research Council of CanadaOttawaCanada

Personalised recommendations