The Visual Computer

, Volume 27, Issue 2, pp 85–95 | Cite as

A GPU framework for parallel segmentation of volumetric images using discrete deformable models

  • Jérôme Schmid
  • José A. Iglesias Guitián
  • Enrico Gobbetti
  • Nadia Magnenat-Thalmann
Original Article

Abstract

Despite the ability of current GPU processors to treat heavy parallel computation tasks, its use for solving medical image segmentation problems is still not fully exploited and remains challenging. A lot of difficulties may arise related to, for example, the different image modalities, noise and artifacts of source images, or the shape and appearance variability of the structures to segment. Motivated by practical problems of image segmentation in the medical field, we present in this paper a GPU framework based on explicit discrete deformable models, implemented over the NVidia CUDA architecture, aimed for the segmentation of volumetric images. The framework supports the segmentation in parallel of different volumetric structures as well as interaction during the segmentation process and real-time visualization of the intermediate results. Promising results in terms of accuracy and speed on a real segmentation experiment have demonstrated the usability of the system.

Keywords

Simulation and modeling GPU programming Segmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997) MATHCrossRefGoogle Scholar
  2. 2.
    Cates, J.E., Lefohn, A.E., Whitaker, R.T.: Gist: an interactive, GPU-based level set segmentation tool for 3D medical images. Med. Image Anal. 8(3), 217–231 (2004) CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The use of active shape models for locating structures in medical images. In: Proc. IPMI. LNCS, vol. 687, pp. 33–47. Springer, Berlin (1993) Google Scholar
  4. 4.
    Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proc. SIGGRAPH I3D, pp. 15–22. ACM, New York (2009) Google Scholar
  5. 5.
    Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32(2), 111–146 (1999) CrossRefGoogle Scholar
  6. 6.
    Georgii, J., Westermann, R.: Mass–spring systems on the GPU. Simul. Model. Pract. Theory 13, 693–702 (2005) CrossRefGoogle Scholar
  7. 7.
    Gilles, B., Magnenat-Thalmann, N.: Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med. Image Anal. 14(3), 291–302 (2010) CrossRefGoogle Scholar
  8. 8.
    Gobbetti, E., Marton, F., Iglesias Guitián, J.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008). Proc. CGI 2008 CrossRefGoogle Scholar
  9. 9.
    Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S., Grajewski, M., Turek, S.: Exploring weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Comput. 33(10–11), 685–699 (2007) Google Scholar
  10. 10.
    He, Z., Kuester, F.: GPU-based active contour segmentation using gradient vector flow. Adv. Vis. Comput. 4291, 191–201 (2006) CrossRefGoogle Scholar
  11. 11.
    Holden, M., Hill, D., Denton, E., Jarosz, J., Cox, T., Hawkes, D.: Voxel similarity measures for 3D serial MR brain image registration. In: Proc. IPMI. LNCS, vol. 1613, pp. 472–477. Springer, Berlin (1999) Google Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988) CrossRefGoogle Scholar
  13. 13.
    Kienel, E., Brunnett, G.: Tile-based image forces for active contours on GPU. In: Proc. Eurographics, pp. 89–92. Eurographics Association, Geneva (2009) Google Scholar
  14. 14.
    Köhn, A., Drexl, J., Ritter, F., König, M., Peitgen, H.: GPU accelerated image registration in two and three dimensions. In: Proc. BVM, pp. 261–265. Springer, Berlin (2006) Google Scholar
  15. 15.
    Lahabar, S., Narayanan, P.J.: Singular value decomposition on GPU using CUDA. In: Proc. IPDPS, pp. 1–10. IEEE Comput. Soc., Los Alamitos (2009) Google Scholar
  16. 16.
    Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Proc. MICCAI. LNCS, vol. 2878, pp. 564–572. Springer, Berlin (2003) Google Scholar
  17. 17.
    Liu, J., Sun, J., Shum, H.: Paint selection. ACM Trans. Graph. 28(3), 1–7 (2009) Google Scholar
  18. 18.
    Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R.: Segmentation of bone in clinical knee MRI using texture-based geodesic active contours. In: Proc. MICCAI. LNCS, vol. 1496, pp. 1195–1204. Springer, Berlin (1998) Google Scholar
  19. 19.
    Mosegaard, J., Herborg, P., Sorensen, T.: A GPU accelerated spring–mass system for surgical simulation. Stud. Health Technol. Inform. 111, 342–348 (2005) Google Scholar
  20. 20.
    Muyan-Ozcelik, P., Owens, J., Xia, J., Samant, S.: Fast deformable registration on the GPU: a CUDA implementation of demons. In: Proc. ICCSA, pp. 223–233. IEEE Comput. Soc., Los Alamitos (2008) Google Scholar
  21. 21.
    NVIDIA Corporation. NVIDIA CUDA Programming Guide, ver. 3.1 (2010) Google Scholar
  22. 22.
    Olabarriaga, S., Smeulders, A.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001) CrossRefGoogle Scholar
  23. 23.
    Østergaard Noe, K., De Senneville, B., Elstrøm, U., Tanderup, K., Sørensen, T.: Acceleration and validation of optical flow based deformable registration for image-guided radiotherapy. Acta Oncol. 47(7), 1286–1293 (2008) CrossRefGoogle Scholar
  24. 24.
    Pan, W.: Improving interactive image segmentation via appearance propagation. In: Alliez, P., Magnor, M. (eds.) Proc. Eurographics, pp. 93–96. Eurographics Association, Geneva (2009) Google Scholar
  25. 25.
    Rodriguez-Navarro, J., Susin, A.: Non-structured meshes for cloth GPU simulation using FEM. In: Mendoza, C., Navazo, I. (eds.) Proc. VRIPHYS, pp. 1–7. Eurographics Association, Geneva (2006) Google Scholar
  26. 26.
    Santner, J., Unger, M., Pock, T., Leistner, C., Saffari, A., Bischof, H.: Interactive texture segmentation using random forests and total variation. In: Proc. BMVC. BMVA Press, London (2009, to appear) Google Scholar
  27. 27.
    Schmid, J., Magnenat-Thalmann, N.: MRI bone segmentation using deformable models and shape priors. In: Proc. MICCAI. LNCS, vol. 5241, pp. 119–126. Springer, Berlin (2008) Google Scholar
  28. 28.
    Schmid, J., Nijdam, N., Han, A., Kim, J., Magnenat-Thalmann, N.: Interactive segmentation of volumetric medical images for collaborative telemedicine. In: Modelling the Physiological Human, Proc. 3DPH. LNCS, vol. 5903, pp. 13–24. Springer, Berlin (2009) CrossRefGoogle Scholar
  29. 29.
    Schmid, J., Kim, J., Magnenat-Thalmann, N.: Extreme leg motion analysis of professional ballet dancers via MRI segmentation of multiple leg postures. Int. J. Comput. Assist. Radiol. Surg. (2010). doi:10.1007/s11548-010-0474-z Google Scholar
  30. 30.
    Sebastian, T., Tek, H., Crisco, J., Kimia, B.: Segmentation of carpal bones from CT images using skeletally coupled deformable models. Med. Image Anal. 7(1), 21–45 (2003) CrossRefGoogle Scholar
  31. 31.
    Sharp, G., Kandasamy, N., Singh, H., Folkert, M.: GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration. Phys. Med. Biol. 52(19), 5771–5784 (2007) CrossRefGoogle Scholar
  32. 32.
    Sherbondy, A., Houston, M., Napel, S.: Fast volume segmentation with simultaneous visualization using programmable graphics hardware. In: Proc. VIS, p. 23. IEEE Comput. Soc., Washington (2003) Google Scholar
  33. 33.
    Snel, J., Venema, H., Grimbergen, C.: Deformable triangular surfaces using fast 1-D radial Lagrangian dynamics-segmentation of 3-D MR and CT images of the wrist. IEEE Trans. Med. Imaging 21(8), 888–903 (2002) CrossRefGoogle Scholar
  34. 34.
    Stoev, S., Straßer, W.: Extracting regions of interest applying a local watershed transformation. In: Proc. Conf. Visualization, pp. 21–28. IEEE Comput. Soc., Los Alamitos (2000) Google Scholar
  35. 35.
    Strzodka, R., Droske, M., Rumpf, M.: Image registration by a regularized gradient flow. A streaming implementation in dx9 graphics hardware. Computing 73(4), 373–389 (2004) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Tejada, E., Ertl, T.: Large steps in GPU-based deformable bodies simulation. Simul. Model. Pract. Theory 13(8), 703–715 (2005) CrossRefGoogle Scholar
  37. 37.
    Teßmann, M., Eisenacher, C., Enders, F., Stamminger, M., Hastreiter, P.: GPU accelerated normalized mutual information and B-spline transformation. In: Botha, C., Kindlmann, G., Niessen, W., Preim, B. (eds.) Proc. Eurographics Workshop VCBM, pp. 117–124. Eurographics Association, Delft (2008) Google Scholar
  38. 38.
    Udupa, J.K.: Interactive segmentation and boundary surface formation for 3-d digital images. Comput. Graph. Image Process. 18(3), 213–235 (1982) MATHCrossRefGoogle Scholar
  39. 39.
    Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991) CrossRefGoogle Scholar
  40. 40.
    Unger, M., Pock, T., Trobin, W., Cremers, D., Bischof, H.: Tvseg—interactive total variation based image segmentation. In: Proc. BMVC. BMVA Press, London (2008) Google Scholar
  41. 41.
    Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a challenge grand. In: Heimann, T., Styner, M., Van Ginneken, B. (eds.) Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 7–15. Springer, Berlin (2007) Google Scholar
  42. 42.
    Verlet, L.: Computer “Experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1), 98–103 (1967) CrossRefGoogle Scholar
  43. 43.
    Walters, J., Balu, V., Kompalli, S., Chaudhary, V., Buffalo, N.: Evaluating the use of GPUs in liver image segmentation and HMMER database searches. In: Proc. IPDPS, pp. 1–12. IEEE Comput. Soc., Los Alamitos (2009) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jérôme Schmid
    • 1
  • José A. Iglesias Guitián
    • 2
  • Enrico Gobbetti
    • 2
  • Nadia Magnenat-Thalmann
    • 1
    • 3
  1. 1.MIRALabUniversity of GenevaCarougeSwitzerland
  2. 2.CRS4 Visual Computing GroupPulaItaly
  3. 3.Institute for Media InnovationNanyang Technological UniversitySingaporeSingapore

Personalised recommendations