Advertisement

The Visual Computer

, Volume 27, Issue 3, pp 229–240 | Cite as

Photon streaming for interactive global illumination in dynamic scenes

  • Boris Airieau
  • Daniel MeneveauxEmail author
  • Flavien Bridault
  • Philippe Blasi
Original Article

Abstract

While many methods exist for simulating diffuse light inter-reflections, relatively few of them are adapted to dynamic scenes. Despite approximations made on the formal rendering equation, managing dynamic environments at interactive or real-time frame rates still remains one of the most challenging problems. This paper presents a lighting simulation system based on photon streaming, performed continuously on the central processor unit. The power corresponding to each photon impact is accumulated onto predefined points, called virtual light accumulators (or VLA). VLA are used during the rendering phase as virtual light sources. We also introduce a priority management system that automatically adapts to brutal changes during lighting simulation (for instance due to visibility changes or fast object motion). Our system naturally benefits from multi-core architecture. The rendering process is performed in real time using a graphics processor unit, independently from the lighting simulation process. As shown in the results, our method provides high framerates for dynamic scenes, with moving viewpoint, objects and light sources.

Keywords

Lighting simulation Interactive rendering Photon streaming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(AVI 34.2 MB)

References

  1. 1.
    Brouillat, J., Gautron, P., Bouatouch, K.: Photon-driven irradiance cache. Comput. Graph. Forum 27(7), 1971–1978 (2008) CrossRefGoogle Scholar
  2. 2.
    Cohen, M.F., Wallace, J.R.: Radiosity and Realistic Image Synthesis. Morgan Kaufmann, San Mateo (1993) zbMATHGoogle Scholar
  3. 3.
    Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Symposium on Interactive 3D Graphics, pp. 203–231 (2005) Google Scholar
  4. 4.
    Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: Symposium on Interactive 3D Graphics, pp. 93–100 (2006) Google Scholar
  5. 5.
    Dmitriev, K., Brabec, S., Myszkowski, K., Seidel, H.-P.: Interactive global illumination using selective photon tracing. In: Eurographics Workshop on Rendering Techniques, pp. 25–36 (2002) Google Scholar
  6. 6.
    Gautron, P., Krivánek, J., Bouatouch, K., Pattanaik, S.N.: Radiance cache splatting: a gpu-friendly global illumination algorithm. In: Eurographics Symposium on Rendering, pp. 55–64 (2005) Google Scholar
  7. 7.
    Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. AK Peters, Natick (2001) zbMATHGoogle Scholar
  8. 8.
    Kajiya, J.T.: The rendering equation. In: SIGGRAPH, Proc. of the 13th Annual Conference on Computer Graphics and Interactive Techinques, pp. 143–150 (1986) CrossRefGoogle Scholar
  9. 9.
    Kelemen, C., Szirmay-Kalos, L., Antal, G., Csonka, F.: A simple and robust mutation strategy for the metropolis light transport algorithm. Comput. Graph. Forum 21(3) (2002) Google Scholar
  10. 10.
    Keller, A.: Instant radiosity. In: SIGGRAPH, Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techinques, pp. 49–56 (1997) CrossRefGoogle Scholar
  11. 11.
    Kontkanen, J., Turquin, E., Holzschuch, N., Sillion, F.: Wavelet radiance transport for interactive indirect lighting. In: Eurographics Symposium on Rendering (2006) Google Scholar
  12. 12.
    Kristensen, A.W., Akenine-Möller, T., Jensen, H.W.: Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24(3), 1208–1215 (2005) CrossRefGoogle Scholar
  13. 13.
    Krivánek, J., Bouatouch, K., Pattanaik, S.N., Žára, J.: Making radiance and irradiance caching practical: adaptive caching and neighbor clamping. In: Eurographics Symposium on Rendering, pp. 127–138 (2006) Google Scholar
  14. 14.
    Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., Aila, T.: Incremental instant radiosity for real-time indirect illumination. In: Eurographics Symposium on Rendering, pp. 277–286 (2007) Google Scholar
  15. 15.
    Larsen, B.D., Christensen, N.J.: Simulating photon mapping for real-time applications. In: Eurographics Symposium on Rendering, pp. 123–132 (2004) Google Scholar
  16. 16.
    Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F.X., Aila, T.: A meshless hierarchical representation for light transport. In: SIGGRAPH, Proc. of the 35th Annual Conference on Computer Graphics and Interactive Techniques, vol. 27(3) (2008) Google Scholar
  17. 17.
    Nichols, G., Shopf, J., Wyman, C.: Hierarchical image-space radiosity for interactive global illumination. Comput. Graph. Forum 28(4), 1141–1149 (2009) CrossRefGoogle Scholar
  18. 18.
    Nijasure, M., Pattanaik, S.N., Goel, V.: Interactive global illumination in dynamic environments using commodity graphics hardware. In: Pacific Conference on Computer Graphics and Applications, pp. 450–454 (2003) Google Scholar
  19. 19.
    Ritschel, T., Grosch, T., Kim, M.H., Seidel, H.-P., Dachsbacher, C., Kautz, J.: Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. (Proc. SIGGRAPH ASIA) 27(5), 129 (2008) Google Scholar
  20. 20.
    Segovia, B., Iehl, J.C., Mitanchey, R., Péroche, B.: Bidirectional instant radiosity. In: Eurographics Symposium on Rendering, pp. 389–398 (2006) Google Scholar
  21. 21.
    Segovia, B., Iehl, J.C., Mitanchey, R., Péroche, B.: Non-interleaved deferred shading of interleaved sample patterns. In: Proc. Graphics Hardware, pp. 53–60 (2006) Google Scholar
  22. 22.
    Segovia, B., Iehl, J.C., Péroche, B.: Metropolis instant radiosity. Comput. Graph. Forum (Proc. Eurographics) 26(3), 425–434 (2007) CrossRefGoogle Scholar
  23. 23.
    Sillion, F.X., Puech, C.: Radiosity and global illumination. Morgan Kaufmann, San Mateo (1994) Google Scholar
  24. 24.
    Sloan, P.P.J., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH, Proc. of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 527–536 (2002) CrossRefGoogle Scholar
  25. 25.
    Veach, E., Guibas, L.J.: Metropolis light transport. In: SIGGRAPH, Proc. of the 24th Annual Conference on Computer Graphics and Interactive Techinques, pp. 65–76 (1997) CrossRefGoogle Scholar
  26. 26.
    Wald, I., Benthin, C., Slusallek, P.: Interactive global illumination in complex and highly occluded environments. In: Eurographics Workshop on Rendering Techniques, pp. 74–81 (2003) Google Scholar
  27. 27.
    Wang, R., Wang, R., Zhou, K., Minghao, P., Bao, H.: An efficient gpu-based approach for interactive global illumination. ACM Trans. Graph. 28(3) (2009) Google Scholar
  28. 28.
    Zaninetti, J., Serpaggi, X., Peroche, B.: A vector approach for global illumination in ray tracing. Comput. Graph. Forum (Proc. Eurographics) 17(3), 149–158 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Boris Airieau
    • 1
  • Daniel Meneveaux
    • 1
    Email author
  • Flavien Bridault
    • 2
  • Philippe Blasi
    • 1
  1. 1.XLIM-SIC LaboratoryUniversity of PoitiersFuturoscope Chasseneuil CedexFrance
  2. 2.Etranges LibellulesVilleurbanneFrance

Personalised recommendations