Advertisement

The Visual Computer

, Volume 27, Issue 3, pp 199–210 | Cite as

Skeleton-based control of fluid animation

  • Guijuan ZhangEmail author
  • Dengming Zhu
  • Xianjie Qiu
  • Zhaoqi Wang
Original Article

Abstract

We present a skeleton-based control method for fluid animation. Our method is designed to provide an easy and intuitive control approach while producing visually plausible fluid behavior. In our method, users are allowed to control animated fluid with skeleton keyframes. Expected results are then obtained by driving fluid towards a sequence of targets specified in these keyframes. In order to solve for an optimal driving solution, we propose a keyframe matching model based on the transportation principle. Moreover, to ensure that the fluid actors move as rigid bodies while preserving liquid properties during animation, we introduce an approach of driving solid-like liquid motion. Finally, we embed the skeleton-based control method into the standard fluid animation, and apply it to control fluid actors’ motion as well as liquid shape deformation. Experimental results show that our method can generate natural-looking interesting fluid behavior with little additional cost.

Keywords

Fluid animation Fluid control Skeleton-based control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(13.3 MB)

References

  1. 1.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 736–744. ACM Press, New York (2002) CrossRefGoogle Scholar
  2. 2.
    Stam, J.: Stable fluids. In: SIGGRAPH ’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128. ACM Press/Addison-Wesley, New York (1999) CrossRefGoogle Scholar
  3. 3.
    Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 377–384. ACM Press, New York (2004) Google Scholar
  4. 4.
    Selle, A., Rasmussen, N., Fedkiw, R.: A vortex particle method for smoke, water and explosions. In: SIGGRAPH ’05: Proceedings of the 32th Annual Conference on Computer Graphics and Interactive Techniques, pp. 910–914. ACM Press, New York (2005) Google Scholar
  5. 5.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008) CrossRefGoogle Scholar
  6. 6.
    Foster, N., Metaxas, D.: Controlling fluid animation. In: CGI ’97: Proceedings of the 1997 Conference on Computer Graphics International, p. 178. IEEE Computer Society, Washington (1997) CrossRefGoogle Scholar
  7. 7.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 23–30. ACM Press, New York (2001) CrossRefGoogle Scholar
  8. 8.
    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–202. Eurographics Association, Aire-la-Ville (2004) CrossRefGoogle Scholar
  9. 9.
    Pighin, F., Cohen, J.M., Shah, M.: Modeling and editing flows using advected radial basis functions. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 223–232. Eurographics Association, Aire-la-Ville (2004) CrossRefGoogle Scholar
  10. 10.
    Schpok, J., Dwyer, W.T., Ebert, D.S.: Modeling and animating gases with simulation features. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 97–106 (2005) Google Scholar
  11. 11.
    Angelidis, A., Neyret, F., Singh, K., Nowrouzezahrai, D.: A controllable, fast and stable basis for vortex based smoke simulation. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 25–32. Eurographics Association, Aire-la-Ville (2006) Google Scholar
  12. 12.
    Kim, Y., Machiraju, R., Thompson, D.: Path-based control of smoke simulations. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–42. Eurographics Association, Aire-la-Ville (2006) Google Scholar
  13. 13.
    Lamorlette, A., Foster, N.: Structural modeling of flames for a production environment. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 729–735. ACM Press, New York (2002) CrossRefGoogle Scholar
  14. 14.
    Treuille, A., McNamara, A., Popović, Z., Stam, J.: Keyframe control of smoke simulations. In: SIGGRAPH ’03: Proceedings of the 30th Annual Conference on Computer Graphics and Interactive Techniques, pp. 716–723. ACM Press, New York (2003) Google Scholar
  15. 15.
    McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 449–456. ACM Press, New York (2004) Google Scholar
  16. 16.
    Fattal, R., Lischinski, D.: Target-driven smoke animation. In: SIGGRAPH ’04: Proceedings of the 31th Annual Conference on Computer Graphics and Interactive Techniques, pp. 441–448. ACM Press, New York (2004) Google Scholar
  17. 17.
    Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236. ACM Press, New York (2005) CrossRefGoogle Scholar
  18. 18.
    Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: SCA ’06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–12. Eurographics Association, Aire-la-Ville (2006) Google Scholar
  19. 19.
    Cornea, N.D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13(3), 530–548 (2007) CrossRefGoogle Scholar
  20. 20.
    Yoshizawa, S., Belyaev, A., Seidel, H.P.: Skeleton-based variational mesh deformations. Comput. Graph. Forum (Proc. EUROGRAPHICS) 26(3), 255–264 (2007) CrossRefGoogle Scholar
  21. 21.
    Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005) CrossRefGoogle Scholar
  22. 22.
    Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill Science/Engineering/Math., New York (2005) Google Scholar
  23. 23.
    Dantzig, George B.: Linear programming and extensions. Princeton University Press, Princeton (1963) zbMATHGoogle Scholar
  24. 24.
    Reinfeld, N.V., Vogel, W.R.: Mathematical Programming. Prentice-Hall, Englewood Cliffs (1958) Google Scholar
  25. 25.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  26. 26.
    Pharr, P.H.A.R.R., Humphreys, G.: Physically Based Rendering: From Theory to Implementation (The Interactive 3D Technology Series). Morgan Kaufmann, San Mateo (2004) Google Scholar
  27. 27.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93(4), 1591–1595 (1996) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Guijuan Zhang
    • 1
    • 2
    Email author
  • Dengming Zhu
    • 1
  • Xianjie Qiu
    • 1
  • Zhaoqi Wang
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations