The Visual Computer

, Volume 27, Issue 1, pp 67–81 | Cite as

GPGPU computation and visualization of three-dimensional cellular automata

  • Stéphane Gobron
  • Arzu Çöltekin
  • Hervé Bonafos
  • Daniel Thalmann
Original Article

Abstract

This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method’s efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CPU.

Keywords

Cellular automata GPGPU Simulation of natural phenomena Emerging behavior Volume graphics Information visualization Real-time rendering Medical visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloomenthal, J., Bajaj, C., Cani, M.P., Rockwood, A., Wyvill, R., Wywill, G.: Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco (1997) MATHGoogle Scholar
  2. 2.
    Çöltekin, A., Haggrén, H.: Stereo foveation. Photogram. J. Finl. 20(1) (2006) Google Scholar
  3. 3.
    Conway, J.: Game of life. Sci. Am. 223, 120–123 (1970) Google Scholar
  4. 4.
    Coutinho, B.B.S., Giraldi, G., Apolinario, A., Rodrigues, P.: GPU surface flow simulation and multiresolution animation in digital terrain models. In: LNCC Reports 2008. Petrópolis/RJ, Brazil (2008) Google Scholar
  5. 5.
    Duchowski, A., Çöltekin, A.: Foveated gaze-contingent displays for peripheral LOD management, 3D visualization, and stereo imaging. ACM Trans. Multimedia Comput. Commun. Appl. (TOMCCAP). Arch. 3(6) (2007) Google Scholar
  6. 6.
    Ganguly, N., Sikdar, B.K., Deutsch, A., Canright, G., Chaudhuri, P.P.: A survey on cellular automata. Tech. rep., Centre for High Performance Computing, Dresden University of Technology (2003) Google Scholar
  7. 7.
    Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. (1970) Google Scholar
  8. 8.
    Gardner, M.: Mathematical games: On cellular automata, self-reproduction, the garden of eden and the game “life”. Sci. Am. (1971) Google Scholar
  9. 9.
    Gerhardt, M., Schuster, H., Tyson, J.: A cellular automaton model of excitable media including curvature and dispersion. Science 247, 1563–1566 (1990) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Gobron, S., Bonafos, H., Mestre, D.: GPU accelerated computation and visualization of hexagonal cellular automata. In: 8th International Conference on Cellular Automata for Research and Industry, ACRI 2008, vol. 5191/2008, pp. 512–521. Yokohama, Japan, Springer (2008) Google Scholar
  11. 11.
    Harris, M.J., Coombe, G., Scheuermann, T., Lastra, A.: Physically-based visual simulation on graphics hardware. In: HWWS’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 109–118. Eurographics Association, Aire-la-Ville (2002) Google Scholar
  12. 12.
    Durbeck, L., Macias, N.: The cell matrix: An architecture for nanocomputing. Nanotechnology 12, 217–230 (2001) CrossRefGoogle Scholar
  13. 13.
    Tomassini, M., Sipper, M., Perrenoud, M.: On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Trans. Comput. 49(10), 1146–1151 (2000) CrossRefGoogle Scholar
  14. 14.
    von Neumann, J.: Theory of self-reproducing automata. In: Essays on Cellular Automata. University of Illinois Press, Urbana (1970) Google Scholar
  15. 15.
    Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krueger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007) CrossRefGoogle Scholar
  16. 16.
    Phillips, W., Phillips, N.: An Introduction to Mineralogy for Geologists. Wiley, New York (1981) Google Scholar
  17. 17.
    Pinto, N., Antunes, A.: Cellular automata and urban studies: A literature survey. Archit. City Environ. 1(3) (2007) Google Scholar
  18. 18.
    Prusinkiewicz, P.: Modeling and visualization of biological structures. In: Proceeding of Graphics Interface ’93, pp. 128–137. Toronto, Ontario, Canada (1993) Google Scholar
  19. 19.
    Rost, R.: OpenGL Shading Language, 2nd edn. Addison-Wesley, Reading (2006) Google Scholar
  20. 20.
    Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide: The Official Guide to Learning OpenGL v2.0, 1st edn. Addison-Wesley, Reading (2005) Google Scholar
  21. 21.
    Singler, J.: Implementation of cellular automata on a GPU. In: ACM Workshop on General Purpose Computing on Graphics Processors, sponsored by ACM SIGGRAPH. Los Angeles, USA (2004). http://www.jsingler.de/studies/cagpu.php
  22. 22.
    Smith, M.: Cellular automata methods in mathematical physics. Ph.D. thesis, Institut National Polytechnique de Grenoble (1994) Google Scholar
  23. 23.
    Tatarchuk, N., Shopf, J., DeCoro, C.: Advanced interactive medical visualization on the GPU. J. Parallel Distrib. Comput. 68(10), 1319–1328 (2008) CrossRefGoogle Scholar
  24. 24.
    Thalmann, D.: A lifegame approach to surface modeling and rendering. Vis. Comput. 2, 384–390 (1986) MATHCrossRefGoogle Scholar
  25. 25.
    Tran, J., Jordan, D., Luebke, D.: New challenges for cellular automata simulation on the GPU. www.cs.virginia.edu (2003)
  26. 26.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984) MathSciNetGoogle Scholar
  27. 27.
    Wolfram, S.: A New Kind of Science, 1st edn. Wolfram Media Inc. (2002) Google Scholar
  28. 28.
    Wu, T.-C., Hong, B.-Y.: Simulation of urban land development and land use change employing GIS with cellular automata. In: Second International Conference on Computer Modeling and Simulation, pp. 513–516. Institute of Electrical and Electronics Engineers (2010) Google Scholar
  29. 29.
    Zaloudek, L., Sekanina, L., Simek, V.: GPU accelerators for evolvable cellular automata. In: Computation World: Future Computing, Service Computation, Adaptive, Content, Cognitive, Patterns, pp. 533–537. Institute of Electrical and Electronics Engineers (2009) Google Scholar
  30. 30.
    Zhao, Y.: GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme. In: IEEE International Conference on Shape Modeling and Applications (SMI’08). Stony Brook, New York (2008) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stéphane Gobron
    • 1
  • Arzu Çöltekin
    • 2
  • Hervé Bonafos
    • 3
  • Daniel Thalmann
    • 1
  1. 1.EPFL, IC, ISIM, VRLABLausanneSwitzerland
  2. 2.GIVA, Department of GeographyUniversity of ZürichZurichSwitzerland
  3. 3.TecnomadeNancyFrance

Personalised recommendations