The Visual Computer

, Volume 27, Issue 1, pp 57–66 | Cite as

Maintaining frame rate perception in interactive environments by exploiting audio-visual cross-modal interaction

  • Vedad Hulusić
  • Kurt Debattista
  • Vibhor Aggarwal
  • Alan Chalmers
Original Article

Abstract

The entertainment industry, primarily the video games industry, continues to dictate the development and performance requirements of graphics hardware and computer graphics algorithms. However, despite the enormous progress in the last few years, it is still not possible to achieve some of industry’s demands, in particular high-fidelity rendering of complex scenes in real-time, on a single desktop machine. A realisation that sound/music and other senses are important to entertainment led to an investigation of alternative methods, such as cross-modal interaction in order to try and achieve the goal of “realism in real-time”. In this paper we investigate the cross-modal interaction between vision and audition for reducing the amount of computation required to compute visuals by introducing movement related sound effects. Additionally, we look at the effect of camera movement speed on temporal visual perception. Our results indicate that slow animations are perceived as smoother than fast animations. Furthermore, introducing the sound effect of footsteps to walking animations further increased the animation smoothness perception. This has the consequence that for certain conditions, the number of frames that need to be rendered each second can be reduced, saving valuable computation time, without the viewer being aware of this reduction. The results presented are another step towards the full understanding of the auditory-visual cross-modal interaction and its importance for helping achieve “realism int real-time”.

Keywords

Cross-modal Perception High-fidelity rendering 

References

  1. 1.
    Alais, D., Morrone, C., Burr, D.: Separate attentional resources for vision and audition. Proc. Biol. Sci. 273(1592), 1339–1345 (2006). doi:10.1098/rspb.2005.3420 CrossRefGoogle Scholar
  2. 2.
    Allport, D.A., Antonis, B., Reynolds, P.: On the division of attention: a disproof of the single channel hypothesis. Q. J. Exp. Psychol. 24(2), 225–235 (1972) CrossRefGoogle Scholar
  3. 3.
    Arif, M., Ohtaki, Y., Nagatomi, R.H.I.: Estimation of the effect of cadence on gait stability in young and elderly people using approximate entropy technique. Meas. Sci. Rev. 4, 29–40 (2004) Google Scholar
  4. 4.
    Bonnel, A.M., Hafter, E.R.: Divided attention between simultaneous auditory and visual signals. Percept. Psychophys. 60(2), 179–190 (1998) Google Scholar
  5. 5.
    Bonneel, N., Suied, C., Viaud-Delmon, I., Drettakis, G.: Bimodal perception of audio-visual material properties for virtual environments. ACM Trans. Appl. Percept. (2009). http://www-sop.inria.fr/reves/Basilic/2009/BSVD09
  6. 6.
    Bonneel, N., Suied, C., Viaud-Delmon, I., Drettakis, G.: Bimodal perception of audio-visual material properties for virtual environments. ACM Trans. Appl. Percept. 7(1), 1–16 (2010). http://doi.acm.org/10.1145/1658349.1658350 CrossRefGoogle Scholar
  7. 7.
    Burr, D., Alais, D.: Combining visual and auditory information. Prog. Brain Res. 155, 243–258 (2006). doi:10.1016/S0079-6123(06)55014-9 CrossRefGoogle Scholar
  8. 8.
    Cater, K., Chalmers, A., Ward, G.: Detail to attention: exploiting visual tasks for selective rendering. In: EGRW ’03: Proceedings of the 14th Eurographics Workshop on Rendering Techniques, pp. 270–280. Eurographics Association, Leuven, Belgium (2003) Google Scholar
  9. 9.
    Choe, C.S., Welch, R.B., Gilford, R.M., Juola, J.F.: The “ventriloquist effect”: visual dominance or response bias? Percept. Psychophys. 18(1), 55–60 (1975) Google Scholar
  10. 10.
    Dumont, R., Pellacini, F., Ferwerda, J.A.: Perceptually-driven decision theory for interactive realistic rendering. ACM Trans. Graph. 22(2), 152–181 (2003). http://doi.acm.org/10.1145/636886.636888 CrossRefGoogle Scholar
  11. 11.
    Duncan, J., Martens, S., Ward, R.: Restricted attentional capacity within but not between sensory modalities. Nature 387(6635), 808–810 (1997) CrossRefGoogle Scholar
  12. 12.
    Funkhouser, T.A., Séquin, C.H.: Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 247–254. ACM, New York (1993). http://doi.acm.org/10.1145/166117.166149 CrossRefGoogle Scholar
  13. 13.
    Gebhard, J.W., Mowbray, G.H.: On discriminating the rate of visual flicker and auditory flutter. Am. J. Psychol. 72, 521–529 (1959) CrossRefGoogle Scholar
  14. 14.
    Getzmann, S.: The effect of brief auditory stimuli on visual apparent motion. Perception 36(7), 1089–1103 (2007) CrossRefGoogle Scholar
  15. 15.
    Grelaud, D., Bonneel, N., Wimmer, M., Asselot, M., Drettakis, G.: Efficient and practical audio-visual rendering for games using crossmodal perception. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2009). http://www-sop.inria.fr/reves/Basilic/2009/GBWAD09
  16. 16.
    Howard, I.P., Templeton, W.B.: Human Spatial Orientation. Wiley, London (1966) Google Scholar
  17. 17.
    Hulusic, V., Aranha, M., Chalmers, A.: The influence of cross-modal interaction on perceived rendering quality thresholds. In: Skala, V. (ed.) WSCG 2008 Full Papers Proceedings, pp. 41–48 (2008) Google Scholar
  18. 18.
    Hulusic, V., Czanner, G., Debattista, K., Sikudova, E., Dubla, P., Chalmers, A.: Investigation of the beat rate effect on frame rate for animated content. In: Hauser, H. (ed.) Spring Conference on Computer Graphics 2009, pp. 167–174. ACM SIGGRAPH Press, New York (2009) Google Scholar
  19. 19.
    Hulusic, V., Debattista, K., Aggarwal, V., Chalmers, A.: Exploiting audio-visual cross-modal interaction to reduce computational requirements in interactive environments. In: Proceedings of the IEEE conference on Games and Virtual Worlds for Serious Applications. IEEE Computer Society, Los Alamitos (2010) Google Scholar
  20. 20.
    Humphreys, G.W., Bruce, V.: Visual Cognition: Computational, Experimental and Neuropsychological Perspectives. Lawrence Erlbaum Associates Ltd, East Sussex, BN3 2FA, UK (1989) Google Scholar
  21. 21.
    James, W.: The Principles of Psychology. Holt, New York (1890) Google Scholar
  22. 22.
    Kajiya, J.T.: The rendering equation. SIGGRAPH Comput. Graph. 20(4), 143–150 (1986) CrossRefGoogle Scholar
  23. 23.
    Kamitani, Y., Shimojo, S.: Sound-induced visual “rabbit”. J. Vis. 1(3), 478–478 (2001). http://journalofvision.org/1/3/478/ CrossRefGoogle Scholar
  24. 24.
    Kayser, C., Petkov, C.I., Lippert, M., Logothetis, N.K.: Mechanisms for allocating auditory attention: an auditory saliency map. Curr. Biol. 15(21), 1943–1947 (2005). doi:10.1016/j.cub.2005.09.040 CrossRefGoogle Scholar
  25. 25.
    Keetels, M., Vroomen, J.: Tactile–visual temporal ventriloquism: no effect of spatial disparity. Percept. Psychophys. 70(5), 765–771 (2008) CrossRefGoogle Scholar
  26. 26.
    Kelly, M.C., Tew, A.I.: The continuity illusion in virtual auditory space. In: Proc. of AES 112th Convention. Munich, Germany (2002) Google Scholar
  27. 27.
    Larsen, A., McIlhagga, W., Baert, J., Bundesen, C.: Seeing or hearing? Perceptual independence, modality confusions, and crossmodal congruity effects with focused and divided attention. Percept. Psychophys. 65(4), 568–574 (2003) Google Scholar
  28. 28.
    Lecuyer, A., Burkhardt, J.M., Henaff, J.M., Donikian, S.: Camera motions improve the sensation of walking in virtual environments. In: VR ’06: Proceedings of the IEEE conference on Virtual Reality, pp. 11–18. IEEE Computer Society, Washington (2006). doi:10.1109/VR.2006.31 Google Scholar
  29. 29.
    Mack, A., Rock, I.: Inattentional Blindness. MIT Press, Cambridge (1998) Google Scholar
  30. 30.
    Massaro, D.W., Warner, D.S.: Dividing attention between auditory and visual perception. Percept. Psychophys. 21(6), 569–574 (1977) Google Scholar
  31. 31.
    Mastoropoulou, G.: The effect of audio on the visual perception of high-fidelity animated 3d computer graphics. PhD in Computer science, University of Bristol (2006) Google Scholar
  32. 32.
    Mastoropoulou, G., Chalmers, A.: The effect of music on the perception of display rate and duration of animated sequences: an experimental study. In: TPCG ’04: Proceedings of the Theory and Practice of Computer Graphics 2004 (TPCG’04), pp. 128–134. IEEE Computer Society, Washington (2004). doi:10.1109/TPCG.2004.34 CrossRefGoogle Scholar
  33. 33.
    Mastoropoulou, G., Debattista, K., Chalmers, A., Troscianko, T.: Auditory bias of visual attention for perceptually-guided selective rendering of animations. In: GRAPHITE ’05: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 363–369. ACM Press, New York (2005). http://doi.acm.org/10.1145/1101389.1101462 CrossRefGoogle Scholar
  34. 34.
    Mastoropoulou, G., Debattista, K., Chalmers, A., Troscianko, T.: The influence of sound effects on the perceived smoothness of rendered animations. In: APGV ’05: Proceedings of the 2nd Symposium on Applied Perception in Graphics and Visualization, pp. 9–15. ACM, New York (2005). http://doi.acm.org/10.1145/1080402.1080404 CrossRefGoogle Scholar
  35. 35.
    Mcgurk, H., Macdonald, J.: Hearing lips and seeing voices. Nature 264(5588), 746–748 (1976). doi:10.1038/264746a0 CrossRefGoogle Scholar
  36. 36.
    Moeck, T., Bonneel, N., Tsingos, N., Drettakis, G., Viaud-Delmon, I., Alloza, D.: Progressive perceptual audio rendering of complex scenes. In: I3D ’07: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 189–196. ACM, New York (2007). http://doi.acm.org/10.1145/1230100.1230133 CrossRefGoogle Scholar
  37. 37.
    Moore, B.C.: An Introduction to the Psychology of Hearing, 2nd edn. Academic Press, San Diego (1982) Google Scholar
  38. 38.
    Morein-Zamir, S., Soto-Faraco, S., Kingstone, A.: Auditory capture of vision: examining temporal ventriloquism. Brain Res. Cogn. Brain Res. 17(1), 154–163 (2003) CrossRefGoogle Scholar
  39. 39.
    Parke, R., Chew, E., Kyriakakis, C.: Quantitative and visual analysis of the impact of music on perceived emotion of film. Comput. Entertain. 5(3), 5 (2007). http://doi.acm.org/10.1145/1316511.1316516 CrossRefGoogle Scholar
  40. 40.
    Ramic-Brkic, B., Chalmers, A., Boulanger, K., Pattanaik, S., Covington, J.: Cross-modal affects of smell on the real-time rendering of grass. In: Hauser, H. (ed.) Spring Conference on Computer Graphics 2009, pp. 175–179. ACM SIGGRAPH Press, New York (2009) Google Scholar
  41. 41.
    Recanzone, G.H.: Auditory influences on visual temporal rate perception. J. Neurophysiol. 89, 1078–1093 (2003) CrossRefGoogle Scholar
  42. 42.
    Sekuler, R., Sekuler, A.B., Lau, R.: Sound alters visual motion perception. Nature 385(6614), 308 (1997). http://dx.doi.org/10.1038/385308a0 CrossRefGoogle Scholar
  43. 43.
    Shams, L., Kamitani, Y., Shimojo, S.: What you see is what you hear. Nature 408, 788+ (2000) CrossRefGoogle Scholar
  44. 44.
    Shams, L., Kamitani, Y., Shimojo, S.: Visual illusion induced by sound. Brain Res. Cogn. Brain Res. 14(1), 147–152 (2002) CrossRefGoogle Scholar
  45. 45.
    Shams, L., Kamitani, Y., Shimojo, S.: Modulations of visual perception by sound. In: Calvert, G.A., Spence, C., Stein, B.E. (eds.) The Handbook of Multisensory Processes, pp. 27–33 (2004) Google Scholar
  46. 46.
    Shipley, T.: Auditory flutter-driving of visual flicker. Science 145, 1328–1330 (1964) CrossRefGoogle Scholar
  47. 47.
    Simons, D., Chabris, C.: Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074 (1999) CrossRefGoogle Scholar
  48. 48.
    Suied, C., Bonneel, N., Viaud-Delmon, I.: Integration of auditory and visual information in the recognition of realistic objects. Exp. Brain Res. (2009) Google Scholar
  49. 49.
    Tsingos, N., Gallo, E., Drettakis, G.: Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23(3), 249–258 (2004). http://doi.acm.org/10.1145/1015706.1015710 CrossRefGoogle Scholar
  50. 50.
    Vroomen, J., de Gelder, B.: Perceptual effects of cross-modal stimulation: ventriloquism and the freezing phenomenon. In: Calvert, G.A., Spence, C., Stein, B.E. (eds.) The Handbook of Multisensory Processes, pp. 140–150 (2004) Google Scholar
  51. 51.
    Vroomen, J., Bertelson, P., Gelder, B.D.: A visual influence in the discrimination of auditory location (1998) Google Scholar
  52. 52.
    Wada, Y., Kitagawa, N., Noguchi, K.: Audio-visual integration in temporal perception. Int. J. Psychophysiol. 50(1–2), 117–124 (2003) CrossRefGoogle Scholar
  53. 53.
    Welch, R.B., Warren, D.H.: Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88(3), 638–667 (1980) CrossRefGoogle Scholar
  54. 54.
    Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20(1), 39–65 (2001). http://doi.acm.org/10.1145/383745.383748. http://pdiff.sourceforge.net/ypg01.pdf CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Vedad Hulusić
    • 1
  • Kurt Debattista
    • 1
  • Vibhor Aggarwal
    • 1
  • Alan Chalmers
    • 1
  1. 1.International Digital Laboratory, WMGUniversity of WarwickCoventryUK

Personalised recommendations