The Visual Computer

, Volume 26, Issue 6–8, pp 893–901

A nonsmooth nonlinear conjugate gradient method for interactive contact force problems

  • Morten Silcowitz-Hansen
  • Sarah Niebe
  • Kenny Erleben
Original Article


Interactive rigid body simulation is important for robot simulation and virtual design. A vital part of the simulation is the computation of contact forces. This paper addresses the contact force problem, as used in interactive simulation. The contact force problem can be formulated in the form of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better.


Contact force computation Rigid body simulation Nonsmooth conjugate gradients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems (1997) Google Scholar
  2. 2.
    Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: SIGGRAPH ’94: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (1994) Google Scholar
  3. 3.
    Billups, S.C.: Algorithms for complementarity problems and generalized equations. PhD thesis, University of Wisconsin at Madison (1995) Google Scholar
  4. 4.
    Clarke, F.: Optimization and Nonsmooth Analysis. Society for Industrial Mathematics (1990) Google Scholar
  5. 5.
    Cottle, R., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992) MATHGoogle Scholar
  6. 6.
    Coumans, E.: The bullet physics library. (2005)
  7. 7.
    Cyberbotics: Webots 6. (2009)
  8. 8.
    Erleben, K.: Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26(2) (2007) Google Scholar
  9. 9.
    Guendelman, E., Bridson, R., Fedkiw, R.: Nonconvex rigid bodies with stacking. ACM Trans. Graph. (2003) Google Scholar
  10. 10.
    Hahn, J.K.: Realistic animation of rigid bodies. In: SIGGRAPH ’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (1988) Google Scholar
  11. 11.
    Kaufman, D.M., Sueda, S., James, D.L., Pai, D.K.: Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27(5) (2008) Google Scholar
  12. 12.
    Koeng, N., Polo, J.: Gazebo, 3d multiple robot simulator with dynamics. (2009)
  13. 13.
    Milenkovic, V.J., Schmidl, H.: A fast impulsive contact suite for rigid body simulation. IEEE Trans. Vis. Comput. Graph. 10(2) (2004) Google Scholar
  14. 14.
    Mirtich, B.V.: Impulse-based dynamic simulation of rigid body systems. PhD thesis, University of California, Berkeley (1996) Google Scholar
  15. 15.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999) Google Scholar
  16. 16.
    O’Sullivan, C., Dingliana, J., Giang, T., Kaiser, M.K.: Evaluating the visual fidelity of physically based animations. ACM Trans. Graph. 22(3) (2003) Google Scholar
  17. 17.
    Poulsen, M., Niebe, S., Erleben, K.: Heuristic convergence rate improvements of the projected Gauss–Seidel method for frictional contact problems. In: Proceedings of WSCG (2010) Google Scholar
  18. 18.
    Redon, S., Kheddar, A., Coquillart, S.: Gauss least constraints principle and rigid body simulations. In: Proceedings of IEEE International Conference on Robotics and Automation (2003) Google Scholar
  19. 19.
    Scholtes, S.: Introduction to piecewise differential equations. Prepring No. 53, May (1994) Google Scholar
  20. 20.
    Silcowitz, M., Niebe, S., Erleben, K.: Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation. In: VRIPHYS 09: Sixth Workshop in Virtual Reality Interactions and Physical Simulations, pp. 105–114. Eurographics Association (2009) Google Scholar
  21. 21.
    Smith, R.: Open dynamics engine. (2000)
  22. 22.
    Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. (2000) Google Scholar
  23. 23.
    Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Meth. Eng. (1996) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Morten Silcowitz-Hansen
    • 1
  • Sarah Niebe
    • 1
  • Kenny Erleben
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations