The Visual Computer

, Volume 26, Issue 6–8, pp 739–748 | Cite as

Contrast prescription for multiscale image editing

  • Dawid Paja̧kEmail author
  • Martin Čadík
  • Tunç Ozan Aydın
  • Makoto Okabe
  • Karol Myszkowski
  • Hans-Peter Seidel
Original Article


Recently proposed edge-preserving multi-scale image decompositions enable artifact-free and visually appealing image editing. As the human eye is sensitive to contrast, per-band contrast manipulation is a natural way of image editing. However, contrast modification in one band usually affects contrasts in other bands, which is not intuitive for the user. In practice, the desired image appearance is achieved through an iterative editing process, which often requires fine tuning of contrast in one band several times. In this article we show an analysis of properties of multiscale contrast editing frameworks and we introduce the concept of contrast prescription, which enables the user to lock the contrast in selected areas and bands and make it immune to contrast manipulations in other bands.


Multiscale image editing Contrast enhancement Interactive image processing HDR Computational photography Image decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look. In: Proc. SIGGRAPH 2006, pp. 637–645 (2006) Google Scholar
  2. 2.
    Black, M., Sapiro, G., Marimont, D., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998) CrossRefGoogle Scholar
  3. 3.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 532–540 (1983) CrossRefGoogle Scholar
  4. 4.
    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. In: Proc. SIGGRAPH 2007, p. 103 (2007) Google Scholar
  5. 5.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 257–266. ACM, New York (2002) CrossRefGoogle Scholar
  6. 6.
    Eisemann, E., Durand, F.: Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23(3), 673–678 (2004) CrossRefGoogle Scholar
  7. 7.
    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3) (2008) Google Scholar
  8. 8.
    Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28(3), 1–10 (2009) CrossRefGoogle Scholar
  9. 9.
    Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. ACM Trans. Graph. (Proc. SIGGRAPH) 26(3) (2007) Google Scholar
  10. 10.
    Gibson, J.D., Bovik, A. (eds.): Handbook of Image and Video Processing. Academic Press, Orlando (2000) Google Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall, New Jersey (2002) Google Scholar
  12. 12.
    Jansen, M.H., Oonincx, P.J.: Second Generation Wavelets and Applications. Springer, Berlin (2005) Google Scholar
  13. 13.
    Krawczyk, G., Myszkowski, K., Seidel, H.P.: Contrast restoration by adaptive countershading. Comput. Graph. Forum 26(3), 581–590 (2007) CrossRefGoogle Scholar
  14. 14.
    Lagendijk, R., Biemond, J., Boekee, D.: Regularized iterative image restoration with ringing reduction. IEEE Trans. Acoust. Speech Signal Process. 36(12), 1874–1888 (1988) CrossRefGoogle Scholar
  15. 15.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. SIGGRAPH 23(3), 689–694 (2004) CrossRefGoogle Scholar
  16. 16.
    Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. SIGGRAPH 23(3), 303–308 (2004) CrossRefGoogle Scholar
  17. 17.
    Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. (Proc. SIGGRAPH) 24(3), 836–844 (2005) CrossRefGoogle Scholar
  18. 18.
    Li, Y., Adelson, E., Agarwala, A.: Scribbleboost: adding classification to edge-aware interpolation of local image and video adjustments. Comput. Graph. Forum 27(4), 1255–1264 (2008) CrossRefGoogle Scholar
  19. 19.
    Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph. 25(3), 646–653 (2006) CrossRefGoogle Scholar
  20. 20.
    Livingstone, M.: Vision and Art: The Biology of Seeing. Harry N. Abrams (2002) Google Scholar
  21. 21.
    Mantiuk, R., Myszkowski, K., Seidel, H.P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006) CrossRefGoogle Scholar
  22. 22.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond., Ser. B, Biol. Sci. 207(1167), 187–217 (1980) Google Scholar
  23. 23.
    Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7(10), 2032–2040 (1990) CrossRefGoogle Scholar
  24. 24.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990) CrossRefGoogle Scholar
  25. 25.
    Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009), Annual Conference Series. ACM, New York (2009) Google Scholar
  26. 26.
    Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1997) CrossRefMathSciNetGoogle Scholar
  27. 27.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision (ICCV ’98), p. 839. IEEE Computer Society, Los Alamitos (1998) Google Scholar
  28. 28.
    Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proc. SIGGRAPH ’99, pp. 83–90 (1999) Google Scholar
  29. 29.
    Uytterhoeven, G., Roose, D., Bultheel, A.: Wavelet transforms using the lifting scheme (1997) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Dawid Paja̧k
    • 1
    Email author
  • Martin Čadík
    • 2
  • Tunç Ozan Aydın
    • 2
  • Makoto Okabe
    • 2
  • Karol Myszkowski
    • 2
  • Hans-Peter Seidel
    • 2
  1. 1.Computer Science DepartmentWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations