Advertisement

The Visual Computer

, Volume 26, Issue 6–8, pp 1061–1070 | Cite as

An efficient clustering method for fast rendering of time-varying volumetric medical data

  • Zhenlan Wang
  • Binh P. Nguyen
  • Chee-Kong Chui
  • Jing Qin
  • Chuan-Heng Ang
  • Sim-Heng Ong
Original Article

Abstract

Visualization and exploration of time-varying volumetric medical data help clinicians for better diagnosis and treatment. However, it is a challenge to render these data in an interactive manner because of their complexity and large size. We propose an efficient clustering method for fast compression and rendering of these large dynamic data. We divide the volumes into a set of blocks and use a BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) based algorithm to cluster them, which can usually find a high quality clustering with a single scan of the blocks. In addition, the granularity of clusters can be adaptively adjusted by dynamically configuring threshold values. In each cluster of blocks, a KeyBlock is generated to represent the cluster, and therefore the storage space of the volumes is reduced greatly. In addition, we assign a lifetime to every KeyBlock and implement a dynamic memory management scheme to further reduce the storage space. During the rendering, each KeyBlock is rendered as a KeyImage, which can be reused if the view transformation and transfer function are not changed. This reuse can help to increase the rendering speed significantly. Experimental results showed that the proposed method can achieve good performance in terms of both speed optimization and space reduction.

Keywords

Time-varying volume rendering BIRCH Clustering 4-D medical images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage, P., Behrenbruch, C., Brady, M., Moore, N.: Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast. Med. Image Anal. 9(4), 315–329 (2005) CrossRefGoogle Scholar
  2. 2.
    Kamasak, M., Bouman, C., Morris, E., Sauer, K.: Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans. Med. Imaging 24(5), 636–650 (2005) CrossRefGoogle Scholar
  3. 3.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 103–114. ACM, New York (1996) Google Scholar
  4. 4.
    Wilhelms, J., Gelder, A.V.: Multi-dimensional trees for controlled volume rendering and compression. In: Proceedings of the Symposium on Volume Visualization 1994 (VVS’94), pp. 27–34. ACM, New York (1994) CrossRefGoogle Scholar
  5. 5.
    Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41, 3445–3462 (1993) zbMATHCrossRefGoogle Scholar
  6. 6.
    Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996) CrossRefGoogle Scholar
  7. 7.
    Zeng, L., Jansen, C., Marsch, S., Unser, M., Hunziker, P.: Four-dimensional wavelet compression of arbitrarily sized echocardiographic data. IEEE Trans. Med. Imaging 21(9), 1179–1187 (2002) CrossRefGoogle Scholar
  8. 8.
    Lalgudi, H., Bilgin, A., Marcellin, M., Nadar, M.: Compression of fMRI and ultrasound images using 4D SPIHT. In: Proceedings of the IEEE International Conference on Image Processing 2005 (ICIP 2005), vol. 2, pp. 746–749 (2005) Google Scholar
  9. 9.
    Chrysafis, C., Said, A., Drukarev, A., Islam, A., Pearlman, W.: SBHP—A low complexity wavelet coder. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 2000 (ICASSP’00), vol. 4, pp. 2035–2038 (2000) Google Scholar
  10. 10.
    Liu, Y., Pearlman, W.: Four-dimensional wavelet compression of 4-D medical images using scalable 4-D SBHP. In: Proceedings of the Data Compression Conference 2007 (DCC’07), pp. 233–242 (2007) Google Scholar
  11. 11.
    Shen, H.W., Chiang, L.J., Ma, K.L.: A fast volume rendering algorithm for time-varying fields using a time-space partitioning (TSP) tree. In: Proceedings of the IEEE International Conference on Visualization 1999 (VIS’99), pp. 371–545 (1999) Google Scholar
  12. 12.
    Ellsworth, D., Chiang, L.J., Shen, H.W.: Accelerating time-varying hardware volume rendering using tsp trees and color-based error metrics. In: Proceedings of the IEEE Symposium on Volume Visualization 2000 (VVS’00), pp. 119–128. ACM, New York (2000) CrossRefGoogle Scholar
  13. 13.
    Shen, H.W., Johnson, C.: Differential volume rendering: A fast volume visualization technique for flow animation. In: Proceedings of the IEEE International Conference on Visualization 1994 (VIS’94), pp. 180–187 (1994) Google Scholar
  14. 14.
    Liao, S.K., Lin, C.F., Chung, Y.C., Lai, J.Z.C.: A differential volume rendering method with second-order difference for time-varying volume data. J. Vis. Lang. Comput. 14(3), 233–254 (2003). Computer Graphics and Virtual Reality CrossRefGoogle Scholar
  15. 15.
    Liao, S.K., La, J.Z.C., Chung, Y.C.: Time-critical rendering for time-varying volume data. Comput. Graph. 28(2), 279–288 (2004) CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Chui, C.K., Cai, Y., Ang, C.H., Teoh, S.H.: Dynamic linear level octree-based volume rendering methods for interactive microsurgical simulation. Int. J. Image Graph. 6(2), 155–172 (2006) CrossRefGoogle Scholar
  17. 17.
    Schneider, J., Westermann, R.: Compression domain volume rendering. In: Proceedings of the IEEE International Conference on Visualization 2003 (VIS’03), pp. 293–300 (2003) Google Scholar
  18. 18.
    Kassim, A., Yan, P., Lee, W.S., Sengupta, K.: Motion compensated lossy-to-lossless compression of 4-D medical images using integer wavelet transforms. IEEE Trans. Inf. Technol. B 9(1), 132–138 (2005) CrossRefGoogle Scholar
  19. 19.
    Sanchez, V., Nasiopoulos, P., Abugharbieh, R.: Efficient lossless compression of 4-D medical images based on the advanced video coding scheme. IEEE Trans. Inf. Technol. B 12(4), 442–446 (2008) CrossRefGoogle Scholar
  20. 20.
    Porter, T., Duff, T.: Compositing digital images. ACM Comput. Graph. 18(3), 253–259 (1984) CrossRefGoogle Scholar
  21. 21.
    Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9(3), 245–261 (1990) zbMATHCrossRefGoogle Scholar
  22. 22.
    Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 2nd edn. Prentice-Hall, Upper Saddle River (1998) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zhenlan Wang
    • 1
  • Binh P. Nguyen
    • 2
  • Chee-Kong Chui
    • 1
  • Jing Qin
    • 3
  • Chuan-Heng Ang
    • 4
  • Sim-Heng Ong
    • 2
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Computer Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.Department of Diagnostic Radiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  4. 4.Department of Computer Science, School of ComputingNational University of SingaporeSingaporeSingapore

Personalised recommendations