Advertisement

The Visual Computer

, Volume 26, Issue 6–8, pp 521–531 | Cite as

A Virtual World Grammar for automatic generation of virtual worlds

  • Tomas TrescakEmail author
  • Marc Esteva
  • Inmaculada Rodriguez
Original Article

Abstract

Hybrid systems such as those that combine 3D virtual worlds and organization based multiagent systems add new visual and communication features for multiuser applications. The design of such hybrid and dynamic systems is a challenging task. In this paper, we propose a system that can automatically generate a 3D virtual world (VW) from an organization based multiagent system (MAS) specification that establishes the activities participants can engage on. Both shape grammar and virtual world paradigms inspired us to propose a Virtual World Grammar (VWG) to support the generation process of a virtual world design. A VWG includes semantic information about both MAS specification and shape grammar elements. This information, along with heuristics and validations, guides the VW generation producing functional designs. To support the definition and execution of a Virtual World Grammar, we have developed a so named Virtual World Builder Toolkit (VWBT). We illustrate this process by generating a 3D visualization of a virtual institution from its specification.

Keywords

Shape grammars Virtual institutions 3D virtual worlds Multi-agent systems CAD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ancona, M., Bogdanovytch, A., Drago, S., Quercini, G.: Rectangular dualization of biconnected plane graphs in linear time and related applications. In: VIII Congress of Simai (Società Italiana di Matematica Applicata e Industriale) (2006) Google Scholar
  2. 2.
    Bogdanovych, A.: Virtual institutions. PhD thesis, University of Technology, Sydney, Australia (2007) Google Scholar
  3. 3.
    Brota, D., Rodriguez, I., Puig, A., Esteva, M.: A generic framework to exploit virtual worlds as normative and dynamic interactive spaces. In: Computer Graphics and Virtual Reality, pp. 151–157 (2009) Google Scholar
  4. 4.
    Duarte, J.P.: Customizing mass housing: a discursive grammar for Siza’s Malagueira houses. PhD thesis, Cambridge (MA): Massachusetts Institute of Technology (2001) Google Scholar
  5. 5.
    Esteva, M., Rosell, B., Rodrguez-Aguilar, J.A., Arcos, J.L.: Ameli: an agent-based middleware for electronic institutions. In: International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243 (2004) Google Scholar
  6. 6.
    Geiger, C., Paelke, V., Reimann, C., Rosenbach, W.: A framework for the structured design of vr/ar content. In: VRST’00: Proceedings of the ACM symposium on Virtual reality Software and Technology, pp. 75–82. ACM, New York (2000) CrossRefGoogle Scholar
  7. 7.
    Wilson, J.R., Eastgate, R.M., D’Cruz, M.: Structured development of virtual environments. In: K. Stanney (ed.) Handbook of Virtual Environments: Design, implementation and applications, pp. 353–378 (2002) Google Scholar
  8. 8.
    Mansouri, H., Kleinermann, F., De Troyer, O.: Detecting inconsistencies in the design of virtual environments over the web using domain specific rules. In: Web3D’09: Proceedings of the 14th International Conference on 3D Web Technology. pp. 101–109. ACM, New York (2009) CrossRefGoogle Scholar
  9. 9.
    Rodriguez, I., Puig, A., Esteva, M., Sierra, C., Bogdanovych, A., Simoff, S.: Intelligent objects to facilitate human participation in virtual institutions. In: Web Intelligence, pp. 196–199 (2008) Google Scholar
  10. 10.
    Southey, F., Linders, J.G.: Ossa—a conceptual modelling system for virtual realities. In: ICCS’01: Proceedings of the 9th International Conference on Conceptual Structures. pp. 333–345. Springer, London (2001) Google Scholar
  11. 11.
    Stiny, G., Gips, J.: Shape grammars and the generative specification of painting and sculpture. In: C.V. Friedman (ed.) Information Processing’71, pp. 1460–1465. Amsterdam (1972) Google Scholar
  12. 12.
    Tanriverdi, V., Jacob, R.J.K.: Vrid: a design model and methodology for developing virtual reality interfaces. In: Proc. ACM VRST 2001 Symposium on Virtual Reality Software and Technology, pp. 175–182. ACM, New York (2001) CrossRefGoogle Scholar
  13. 13.
    Trescak, T., Rodriguez, I., Esteva, M.: General shape grammar interpreter for intelligent designs generations. In: CGIV’09 (2009) Google Scholar
  14. 14.
    Troyer, O.D., Bille, W., Romero, R., Stuer, P.: On generating virtual worlds from domain ontologies. In: MMM, pp. 279–294 (2003) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tomas Trescak
    • 1
    Email author
  • Marc Esteva
    • 1
  • Inmaculada Rodriguez
    • 2
  1. 1.Artificial Intelligence Research InstituteSpanish Council for Scientific ResearchBarcelonaSpain
  2. 2.Applied Mathematics DepartmentUniversity of BarcelonaBarcelonaSpain

Personalised recommendations