Advertisement

The Visual Computer

, Volume 26, Issue 6–8, pp 1037–1047 | Cite as

View-dependent exploration of massive volumetric models on large-scale light field displays

  • José Antonio Iglesias Guitián
  • Enrico Gobbetti
  • Fabio Marton
Original Article

Abstract

We report on a light-field display based virtual environment enabling multiple naked-eye users to perceive detailed multi-gigavoxel volumetric models as floating in space, responsive to their actions, and delivering different information in different areas of the workspace. Our contributions include a set of specialized interactive illustrative techniques able to provide different contextual information in different areas of the display, as well as an out-of-core CUDA-based raycasting engine with a number of improvements over current GPU volume raycasters. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64 Gvoxel data sets on a 35 Mpixel light field display driven by a cluster of PCs.

Keywords

Volume rendering High-field displays Illustrative visualization Massive datasets Virtual reality View-dependent visualization 3D interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.: GPU accelerated direct volume rendering on an interactive light field display. Comput. Graph. Forum 27(2), 231–240 (2008) CrossRefGoogle Scholar
  2. 2.
    Agus, M., Bettio, F., Giachetti, A., Gobbetti, E., Iglesias Guitián, J., Marton, F., Nilsson, J., Pintore, G.: An interactive 3D medical visualization system based on a light field display. Vis. Comput. 25(9), 883–893 (2009) CrossRefGoogle Scholar
  3. 3.
    Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3) (2009) Google Scholar
  4. 4.
    Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006) CrossRefGoogle Scholar
  5. 5.
    Cignoni, P., Scopigno, R., Tarini, M.: A simple normal enhancement technique for interactive non-photorealistic renderings. Comput. Graph. 29(1), 125–133 (2005) CrossRefGoogle Scholar
  6. 6.
    Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: Proc. I3D, pp. 15–22 (2009) Google Scholar
  7. 7.
    Dayal, A., Woolley, C., Watson, B., Luebke, D.: Adaptive frameless rendering. In: Rendering Techniques, pp. 265–276 (2005) Google Scholar
  8. 8.
    Gobbetti, E., Marton, F., Guitián, J.A.I.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric data sets. Vis. Comput. 24(7–9), 797–806 (2008) CrossRefGoogle Scholar
  9. 9.
    Havran, V., Bittner, J., Sára, J.: Ray tracing with rope trees. In: Proc. Spring Conf. Comput. Graph, pp. 130–140 (1998) Google Scholar
  10. 10.
    Herzog, R., Eisemann, E., Myszkowski, K., Seidel, H.P.: Spatio-temporal upsampling on the GPU. In: Proc. I3D (2010) Google Scholar
  11. 11.
    Huang, R., Ma, K.L.: RGVis: Region growing based techniques for volume visualization. In: Proc. Pacific Conf. Comput. Graph. and Applic., pp. 355–363 (2003) Google Scholar
  12. 12.
    Jones, A., McDowall, I., Yamada, H., Bolas, M.T., Debevec, P.E.: Rendering for an interactive 360-degree light field display. ACM Trans. Graph. 26(3), 40 (2007) CrossRefGoogle Scholar
  13. 13.
    Kraus, M.: Pre-integrated volume rendering for multi-dimensional transfer functions. In: IEEE/EG Symposium on Volume and Point-based Graphics, pp. 97–104 (2008) Google Scholar
  14. 14.
    Ljung, P.: Adaptive sampling in single-pass, GPU-based raycasting of multiresolution volumes. In: Proc. Volume Graphics, pp. 39–46 (2006) Google Scholar
  15. 15.
    Luo, Y., Guitián, J.A.I., Gobbetti, E., Marton, F.: Context preserving focal probes for exploration of volumetric medical data sets. In: Second 3D Physiological Human Workshop (2009) Google Scholar
  16. 16.
    Niski, K., Cohen, J.D.: Tile-based level of detail for the parallel age. IEEE Trans. Vis. Comput. Graph. 13, 1352–1359 (2007) CrossRefGoogle Scholar
  17. 17.
    Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless kd-tree traversal for high performance GPU ray tracing. Comput. Graph. Forum 26(3), 415–424 (2007) CrossRefGoogle Scholar
  18. 18.
    Ropinski, T., Rezk-Salama, C., Hadwiger, M., Ljung, P.: Gpu volume raycasting with advanced illumination. In: Eurographics Tutorial 4 (2009) Google Scholar
  19. 19.
    Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. ACM Trans. Graph. 25(3), 1199–1205 (2006) CrossRefGoogle Scholar
  20. 20.
    Segovia, B., de Iehl, J.C., Mitanchey, R., Péroche, B.: Non-interleaved deferred shading of interleaved sample patterns. In: Graphics Hardware, pp. 53–60 (2006) Google Scholar
  21. 21.
    Viola, I., Kanitsar, A., Groller, M.E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. Vis. Comput. Graph. 11(4), 408–418 (2005) CrossRefGoogle Scholar
  22. 22.
    Vollrath, J.E., Schafhitzel, T., Ertl, T.: Employing complex GPU data structures for the interactive visualization of adaptive mesh refinement data. In: Proc. Volume Graphics, pp. 55–58 (2006) Google Scholar
  23. 23.
    Yang, L., Sander, P.V., Lawrence, J.: Geometry-aware framebuffer level of detail. Comput. Graph. Forum 27(4), 1183–1188 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • José Antonio Iglesias Guitián
    • 1
  • Enrico Gobbetti
    • 1
  • Fabio Marton
    • 1
  1. 1.Visual Computing GroupCRS4PulaItaly

Personalised recommendations