The Visual Computer

, Volume 26, Issue 6–8, pp 583–593 | Cite as

Real-time single scattering inside inhomogeneous materials

  • D. Bernabei
  • F. Ganovelli
  • N. Pietroni
  • P. Cignoni
  • S. Pattanaik
  • R. Scopigno
Original Article

Abstract

In this paper we propose a novel technique to perform real-time rendering of translucent inhomogeneous materials, one of the most well-known problems of computer graphics. The developed technique is based on an adaptive volumetric point sampling, done in a preprocessing stage, which associates to each sample the optical depth for a predefined set of directions. This information is then used by a rendering algorithm that combines the object’s surface rasterization with a ray tracing algorithm, implemented on the graphics processor, to compose the final image. This approach allows us to simulate light scattering phenomena for inhomogeneous isotropic materials in real time with an arbitrary number of light sources. We tested our algorithm by comparing the produced images with the result of ray tracing and showed that the technique is effective.

Keywords

Rendering Subsurface scattering GPU computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biri, V., Arqués, D., Michelin, S.: Real time rendering of atmospheric scattering and volumetric shadows. J. WSCG 14(1–3), 65–72 (2006) Google Scholar
  2. 2.
    Blinn, J.F.: Light reflection functions for simulation of clouds and dusty surfaces. SIGGRAPH Comput. Graph. 16(3), 21–29 (1982) CrossRefGoogle Scholar
  3. 3.
    Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. In: HWWS ’03: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 51–59. Eurographics Association, Geneva (2003) Google Scholar
  4. 4.
    Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., Sillion, F.: A survey on participating media rendering techniques. Vis. Comput. (2005) Google Scholar
  5. 5.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. 5(1), 51–72 (1986) CrossRefGoogle Scholar
  6. 6.
    Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: EGRW ’03: Proceedings of the 14th Eurographics Workshop on Rendering, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 197–201. Eurographics Association, Geneva (2003) Google Scholar
  7. 7.
    Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T., Nishita, T.: A simple, efficient method for realistic animation of clouds. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings. Annual Conference Series, pp. 19–28. ACM Press/ACM SIGGRAPH/Addison-Wesley, Longman, New York (2000) Google Scholar
  8. 8.
    Geist, R., Rasche, K., Westall, J., Schalkoff, R.: Lattice-Boltzmann lighting. In: Keller, A., Jensen, H.W. (eds.) Eurographics Symposium on Rendering, Norrkoping, Sweden, 2004, pp. 355–362. Eurographics Association, Geneva (2004) Google Scholar
  9. 9.
    Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1993, pp. 165–174. ACM, New York (1993) CrossRefGoogle Scholar
  10. 10.
    Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23(2), 120–142 (2004) CrossRefGoogle Scholar
  11. 11.
    Harris, M.J., Lastra, A.: Real-time cloud rendering. Comput. Graph. Forum. 76–84 (2001) Google Scholar
  12. 12.
    Hegeman, K., Ashikhmin, M., Premože, S.: A lighting model for general participating media. In: I3D ’05: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, New York, NY, USA, 2005, pp. 117–124. ACM, New York (2005) CrossRefGoogle Scholar
  13. 13.
    Jarosz, W.: Radiance caching for participating media. ACM Trans. Graph. 27(1), 1 (2008) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 2002, pp. 576–581. ACM, New York (2002) CrossRefGoogle Scholar
  15. 15.
    Jensen, H.W., Christensen, P.H.: Efficient simulation of light transport in scenes with participating media using photon maps. In: SIGGRAPH ’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 1998, pp. 311–320. ACM, New York (1998) CrossRefGoogle Scholar
  16. 16.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 2001, pp. 511–518. ACM, New York (2001) CrossRefGoogle Scholar
  17. 17.
    Jimènez, J.-R., Myszkowski, K., Pueyo, X.: Interactive global illumination in dynamic participating media using selective photon tracing. In: SCCG ’05: Proceedings of the 21st Spring Conference on Computer Graphics, New York, NY, USA, 2005, pp. 211–218. ACM, New York (2005) CrossRefGoogle Scholar
  18. 18.
    Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. Comput. Graph. (ACM SIGGRAPH ’84 proceedings) 18, 165–174 (1984) CrossRefGoogle Scholar
  19. 19.
    Kniss, J., Premoze, S., Hansen, C., Ebert, D.: Interactive translucent volume rendering and procedural modeling. In: Visualization Conference, IEEE, 2002 Google Scholar
  20. 20.
    Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Graph. 9(2), 150–162 (2003) CrossRefGoogle Scholar
  21. 21.
    Lafortune, E.P., Willems, Y.D.: Rendering participating media with bidirectional path tracing. In: Pueyo, X., Schröder, P. (eds.) Rendering Techniques ’96, Eurographics, pp. 91–100. Springer, Vienna, New York (1996) Google Scholar
  22. 22.
    Mertens, T.: Efficient rendering of local subsurface scattering. Comput. Graph. Forum 24(1), 41 (2005) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mertens, T., Kautz, J., Bekaert, P., Seidelz, H.-P., Van Reeth, F.: Interactive rendering of translucent deformable objects. In: EGRW ’03: Proceedings of the 14th Eurographics Workshop on Rendering, Aire-la-Ville, Switzerland, Switzerland, 2003, pp. 130–140. Eurographics Association, Geneva (2003) Google Scholar
  24. 24.
    Narasimhan, S.G., Nayar, S.K.: Shedding light on the weather. In: CVPR 03, pp. 665–672 (2003) Google Scholar
  25. 25.
    Premože, S., Ashikhmin, M., Shirley, P.: Path integration for light transport in volumes. In: Christensen, P., Cohen-Or, D. (eds.) Eurographics Symposium on Rendering 2003, pp. 1–12, 2003 Google Scholar
  26. 26.
    Rushmeier, H.: Realistic image synthesis for scenes with radiatively participating media. Ph.D. thesis, Cornell University, Ithaca, NY (1988) Google Scholar
  27. 27.
    Rushmeier, H.E., Torrance, K.E.: The Zonal Method for Calculating Light Intensities in the Presence of a Participating Medium. Comput. Graph. (ACM SIGGRAPH ’87 Proceedings) 21, 293–302 (1987) CrossRefGoogle Scholar
  28. 28.
    Sloan, P.-P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 2002, pp. 527–536. ACM, New York (2002) CrossRefGoogle Scholar
  29. 29.
    Sloan, P.-P., Hall, J., Hart, J., Snyder, J.: Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22(3), 382–391 (2003) CrossRefGoogle Scholar
  30. 30.
    Stam, J.: Stochastic rendering of density fields. In: Graphics Interface ’94, pp. 51–58, May 1994 Google Scholar
  31. 31.
    Stam, J.: Multiple scattering as a diffusion process. In: Eurographics Rendering Workshop, pp. 41–50, 1995 Google Scholar
  32. 32.
    Sun, B., Ramamoorthi, R., Narasimhan, S.G., Nayar, S.K.: A practical analytic single scattering model for real time rendering. ACM Trans. Graph. 24(3), 1040–1049 (2005) CrossRefGoogle Scholar
  33. 33.
    Walter, B., Zhao, S., Holzschuch, N., Bala, K.: Single scattering in refractive media with triangle mesh boundaries. ACM Trans. Graph. 28(3) (2009) Google Scholar
  34. 34.
    Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, New York, NY, USA, 2005, pp. 1202–1207. ACM, New York (2005) CrossRefGoogle Scholar
  35. 35.
    Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. Comput. Graph. Forum 29 (2010). I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.7: Three-Dimensional Graphics and Realism Google Scholar
  36. 36.
    Zhou, K.: Real-time smoke rendering using compensated ray marching. ACM Trans. Graph. 27(3), 1 (2008) CrossRefGoogle Scholar
  37. 37.
    Zhou, K., Hou, Q., Gong, M., Snyder, J., Guo, B., Shum, H.-Y.: Fogshop: real-time design and rendering of inhomogeneous, single-scattering media. In: PG ’07: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, Washington, DC, USA, 2007, pp. 116–125. IEEE Computer Society, Los Alamitos (2007) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. Bernabei
    • 1
    • 2
  • F. Ganovelli
    • 1
  • N. Pietroni
    • 1
  • P. Cignoni
    • 1
  • S. Pattanaik
    • 2
  • R. Scopigno
    • 1
  1. 1.ISTI—CNRPisaItaly
  2. 2.University of Central FloridaOrlandoUSA

Personalised recommendations