Advertisement

The Visual Computer

, Volume 26, Issue 9, pp 1157–1165 | Cite as

A realistic elastic rod model for real-time simulation of minimally invasive vascular interventions

  • Wen Tang
  • Pierre Lagadec
  • Derek Gould
  • Tao Ruan Wan
  • Jianhua Zhai
  • Thien How
Original Article

Abstract

Simulating intrinsic deformation behaviors of guidewire and catheters for interventional radiology (IR) procedures, such as minimally invasive vascular interventions is a challenging task. Especially real-time simulations for interactive training systems require not only the accuracy of guidewire manipulations, but also the efficiency of computations. The insertion of guidewires and catheters is an essential task for IR procedures and the success of these procedures depends on the accurate navigation of guidewires in complex 3D blood vessel structures to a clinical target, whilst avoiding complications or mistakes of damaging vital tissues and blood vessel walls. In this paper, a novel elastic model for modeling guidewires is presented and evaluated. Our interactive guidewire simulator models the medical instrument as thin flexible elastic rods with arbitrary cross sections, treating the centerline as dynamic and the deformation as quasi-static. Constraints are used to enforce inextensibility of guidewires, providing an efficient computation for bending and twisting modes of the physically-based simulation model. We demonstrate the effectiveness of the new model with a number of simulation examples.

Keywords

Surgical simulation and training Interventional radiology Physically-based computer animation Discrete elastic rod model Medical education 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lunderquist, A., Ivancev, K., Wallace, S., Enge, I., Laerum, F., Kolbenstvedt, A.N.: The acquisition of skills in interventional radiology by supervised training on animal models: A three year multicenter experience. Cardiovasc. Interv. Radiol. 18(4), 209–211 (1995) CrossRefGoogle Scholar
  2. 2.
    Seymour, N.E., Gallagher, A.G., Roman, S.A., O’Brien, M.K., Bamsal, V.K., Andersen, D.K., Satava, R.M.: Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Ann. Surg. 236(4), 458–463 (2002) CrossRefGoogle Scholar
  3. 3.
    Cavusoglu, M., Tendick, F., Cohn, M., Sastry, S.: A laparoscopic telesurgical workstation. IEEE Trans. Robot. Autom. 15(4), 728–739 (1999) CrossRefGoogle Scholar
  4. 4.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods, SIGGRAPH. ACM Trans. Graph. 27(3), 63:1–63:12 (2008) CrossRefGoogle Scholar
  5. 5.
    Luboz, V., Lai, L., Blazewski, J., Gould, D., Bello, F.: A virtual environment for core skills training in vascular interventional radiology. In: Proceedings of the 4th International Symposium on Biomedical Simulation, vol. 5104, pp. 215–220 (2008) Google Scholar
  6. 6.
    Cotin, S., Duriez, C., Lenoir, J., Neumann, P., Dawson, S.: New approaches to catheter navigation for interventional radiology simulation. In: Medical Image Computing and Computer-assisted intervention, vol. 8, pp. 534–542 (2005) Google Scholar
  7. 7.
    Alderliesten, T., Konings, M.K., Niessen, W.J.: Modeling friction, intrinsic of curvature, and rotation guidewires for simulation of minimally invasive vascular interventions. IEEE Trans. Biomed. Eng. 54(1), 29–38 (2007) CrossRefGoogle Scholar
  8. 8.
    Cotin, S., Dawson, S., Meglan, D., Shaffer, D., Ferrell, M., Sherman, P.: Icts, an interventional cardiology training system. In: Westwood, J.D., et al. (ed.) Proceedings of Medicine Meets Virtual Reality, pp. 59–65. IOS Press, Amsterdam (2000) Google Scholar
  9. 9.
    Lenoir, J., Meseure, P., Grisoni, L., Chaillou, C.: Surgical thread simulation. In: MS4CMS (Proc. of ESAIM), vol. 12, pp. 102–107 (2002) Google Scholar
  10. 10.
    Nowinski, W.L., Chui, C.K.: Simulation of interventional neuroradiology procedures. In: MIAR, pp. 87–94 (2001) Google Scholar
  11. 11.
    Alderliesten, T.: Simulation of Minimally-Invasive Vascular Interventions for Training Purposes. Ph.D. Dissertation, Utrecht University, December 2004 Google Scholar
  12. 12.
    Van Der Heijden, G.H.M., Neukirch, S., Goss, V.G.A., Thompson, J.M.T.: Instability and self-contact phenomena in the writhing of clamped rods. Int. J. Mech. Sci. 45, 161–196 (2003) zbMATHCrossRefGoogle Scholar
  13. 13.
    Falk, R.S., Xu, J.-M.: Convergence of a second order scheme for the nonlinear dynamical equations of elastic rods. SJNA 32(4), 1185–1209 (1995) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Lin, C.-C., Schwetlick, H.R.: On the geometric flow of Kirchhoff elastic rods. SIAM J. Appl. Math. 65(2), 720–736 (2004) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pai, D.K.: STRANDS: interactive simulation of thin solids using Cosserat models. Comput. Graph. Forum 21, 3 (2004) Google Scholar
  16. 16.
    Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., Le’ve’que, J.-L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25(3), 1180–1187 (2006) CrossRefGoogle Scholar
  17. 17.
    Bertails, F.: Linear time super-helices. Comput. Graph. Forum 28(2), 417–426 (2009) CrossRefGoogle Scholar
  18. 18.
    Spillmann, J., Teschner, M.: CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Proceedings of the 2007 Symposium on Computer Animation, Eurographics Association, pp. 63–72 (2007) Google Scholar
  19. 19.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. (TVCG) 14(1), 213–230 (2008) CrossRefGoogle Scholar
  20. 20.
    Hughes, T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000) zbMATHGoogle Scholar
  21. 21.
    Tang, W., Niquin, C., Schildknecht, A., Wan, T.R.: Fast and accurate finite element method for deformation animations. In: Proceedings of Theory and Practice of Computer Graphics. Cardiff University, Cardiff (2009) Google Scholar
  22. 22.
    Ogata, N., Goto, K., Uda, K.: An evaluation of the physical properties of current microcatheters and guidewires. Interv. Neuroradiol. 3, 65–80 (1997) Google Scholar
  23. 23.
    Schroder, J.: Technology assessment: the mechanical properties of guidewires, part III: sliding friction. Cardiovasc. Interv. Radiol. 16, 93–97 (1993) CrossRefGoogle Scholar
  24. 24.
    Webster, R.J. III, Cowan, N.J., Chirikjian, G., Okamura, A.M.: Nonholonomic modeling of needle steering. In: 9th International Symposium on Experimental Robotics, June 2004 Google Scholar
  25. 25.
    Duindam, V., Alterovitz, R., Sastry, S., Goldberg, K.: Screw-based motion planning for bevel-tip flexible needles in 3d environments with obstacles. In: IEEE Intl. Conf. on Robot. and Autom., pp. 2483–2488, May 2008 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wen Tang
    • 1
  • Pierre Lagadec
    • 1
  • Derek Gould
    • 2
  • Tao Ruan Wan
    • 3
  • Jianhua Zhai
    • 2
  • Thien How
    • 2
  1. 1.School of ComputingTeesside UniversityMiddlesbroughUK
  2. 2.Radiology DepartmentRoyal Liverpool University HospitalLiverpoolUK
  3. 3.School of Informatics and MediaBradford UniversityBradfordUK

Personalised recommendations