The Visual Computer

, Volume 26, Issue 6–8, pp 823–829 | Cite as

Generating B-spline curves with points, normals and curvature constraints: a constructive approach

  • Abdulwahed Abbas
  • Ahmad Nasri
  • Takashi Maekawa
Original Article


This paper presents a constructive method for generating a uniform cubic B-spline curve interpolating a set of data points simultaneously controlled by normal and curvature constraints. By comparison, currently published methods have addressed one or two of those constraints (point, normal or cross-curvature interpolation), but not all three constraints simultaneously with C2 continuity. Combining these constraints provides better control of the generated curve in particular for feature curves on free-form surfaces. Our approach is local and provides exact interpolation of these constraints.


B-splines curves and surfaces Recursive subdivision Limit curve and surface Fitting Interpolation Normal Curvature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978). Also published in Seminal Graphics, Ed. Rosalee Wolfe, pp. 183–188, ACM Press, 1988, ISBN 1-58113-052-X CrossRefGoogle Scholar
  2. 2.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide, 5th edn. Morgan Kaufmann, San Mateo (2002) Google Scholar
  3. 3.
    Gofuku, S., Tamura, S., Maekawa, T.: Point-tangent/point-normal B-spline curve interpolation by geometric algorithms. Comput. Aided Des. (2009) Google Scholar
  4. 4.
    Halstead, M.A., Kass, M., DeRose, T.: Efficient, fair interpolation using Catmull–Clark surfaces. In: SIGGRAPH, pp. 35–44 (1993) Google Scholar
  5. 5.
    Hoschek, J., Jüttler, B.: Techniques for fair and shape preserving surface fitting with tensor-product B-splines. In: Shape Preserving Representations in Computer-Aided Geometric Design, pp. 163–185. Nova Science, New York (1999) Google Scholar
  6. 6.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Wellesley (1993) zbMATHGoogle Scholar
  7. 7.
    Jackson, T.R., Ye, X., Patrikalakis, N.M.: Geometric design of functional surfaces. Comput. Aided Des. 28(9), 741–752 (1996) CrossRefGoogle Scholar
  8. 8.
    Maekawa, T., Matsumoto, Y., Namiki, K.: Interpolation by geometric algorithm. Comput. Aided Des. 39(4), 313–323 (2007) CrossRefGoogle Scholar
  9. 9.
    Nasri, A., Abbas, A.: Designing Catmull–Clark subdivision surfaces with curve interpolation constraints. Comput. Graph. 26(3), 393–400 (2002) CrossRefGoogle Scholar
  10. 10.
    Nasri A., Abbas, A., Hasbini, I.: Skinning Catmull–Clark subdivision surfaces with incompatible cross-sectional curves. In: Pacific Graphics, Canmore, Canada, October 2003 Google Scholar
  11. 11.
    Nasri A., Sabin, M.: Taxonomy of interpolation conditions in recursive subdivision curves. J. Vis. Comput. 18(4), 259–272 (2002) CrossRefGoogle Scholar
  12. 12.
    Nasri A., Sabin, M.: Taxonomy of interpolation conditions in recursive subdivision surfaces. J. Vis. Comput. 18(6), 382–403 (2002) CrossRefGoogle Scholar
  13. 13.
    Nasri A., Sabin, M., Abu Zaki, R., Nassiri, N., Santina, R.: Feature curves with cross curvature control on Catmull–Clark subdivision surfaces. In: Computer Graphics International, pp. 761–768 (2006) Google Scholar
  14. 14.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York (1997) Google Scholar
  15. 15.
    Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Berlin (2002) zbMATHGoogle Scholar
  16. 16.
    Schaefer, S., Warren, J.D., Zorin, D.: Lofting curve networks using subdivision surfaces. In: Symposium on Geometry Processing, pp. 105–116 (2004) Google Scholar
  17. 17.
    Weiss, V., Andor, L., Renner, G., Várady, T.: Advanced surface fitting techniques. Comput. Aided Geom. Des. 19(1), 19–42 (2002) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Abdulwahed Abbas
    • 1
  • Ahmad Nasri
    • 2
  • Takashi Maekawa
    • 3
  1. 1.Department of Computer ScienceThe University of BalamandTripoliLebanon
  2. 2.Department of Computer ScienceAmerican University of BeirutBeirutLebanon
  3. 3.Department of Mechanical EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations