The Visual Computer

, Volume 26, Issue 6–8, pp 1027–1036 | Cite as

Cage-free local deformations using green coordinates

  • Zheng Li
  • David Levin
  • Zhengjie Deng
  • Dingyuan Liu
  • Xiaonan Luo
Original Article

Abstract

Green coordinates require to build an enclosing cage around a shape that is deformed by manipulating the cage. In this paper, we build upon the local differences of Green coordinates and propose a method to deform a shape locally without constructing a cage. Second, we derive linear formulas to directly interpolate points on the shape to desired locations using an umbrella shaped cell. Moreover, we set up an influence region to confine the deformation in a local area. Finally, we suggest a method to automatically construct an umbrella shaped cell and thus update it consecutively while the shape is deforming. Experiments have shown that the suggested approach delivers smooth local deformations and enables shape manipulations at an interactive rate.

Keywords

Shape deformations Green coordinates Cage Umbrella shaped cell Handles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, B., Curless, B., Popović, Z.: The space of human body shapes: Reconstruction and parameterization from range scan. ACM Trans. Graph. 22(3), 587–594 (2003) CrossRefGoogle Scholar
  2. 2.
    Au, O.K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., Lee, T.-Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), 44 (2008) CrossRefGoogle Scholar
  3. 3.
    Ben-Chen, M., Weber, O., Gotsman, C.: Spatial deformation transfer. In: SCA ’09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67–74. ACM Press, New York (2009) CrossRefGoogle Scholar
  4. 4.
    Ben-Chen, M., Weber, O., Gotsmanm, C.: Variational harmonic maps for space deformation. ACM Trans. Graph. 28(3), 34 (2009) CrossRefGoogle Scholar
  5. 5.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Trans. Vis. Comput. Graph. 14(1), 213–230 (2008) CrossRefGoogle Scholar
  6. 6.
    Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007) CrossRefGoogle Scholar
  7. 7.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007) CrossRefGoogle Scholar
  8. 8.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005) CrossRefGoogle Scholar
  9. 9.
    Levin, D., Lipman, Y.: Derivation and analysis of green coordinates. Technical Report, Tel-Aviv University (2008) Google Scholar
  10. 10.
    Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.-P.: Differential coordinates for interactive mesh editing. In: Shape Modeling International 2004 (SMI’04), pp. 181–190. IEEE Computer Society Press, Los Alamitos (2004) CrossRefGoogle Scholar
  11. 11.
    Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph. 27(3), 78 (2008) CrossRefGoogle Scholar
  12. 12.
    Schneider, P.J., Eberly, D.: Geometric Tools for Computer Graphics. Elsevier, New York (2002) Google Scholar
  13. 13.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of the fifth Eurographics Symposium on Geometry Processing, pp. 109–116, Barcelona, Spain, 2007. Eurographics Association (2007) Google Scholar
  14. 14.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: Scopigno, R., Zorin, D. (eds.) The 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (Nice, France), pp. 175–184. ACM Press, New York (2004) CrossRefGoogle Scholar
  15. 15.
    Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Transactions on Graphics, 28(3) (2009) Google Scholar
  16. 16.
    Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers, 2003 Google Scholar
  17. 17.
    von Funck, W., Theisel, H., Seidel, H.-P.: Vector field based shape deformations. ACM Trans. Graph. 25(3), 1118–1125 (2006) CrossRefGoogle Scholar
  18. 18.
    Weber, O., Sorkine, O., Lipman, Y., Gotsman, C.: Context-aware skeletal shape deformation. Comput. Graph. Forum 26(3), 265–274 (2007) CrossRefGoogle Scholar
  19. 19.
    Weber, O., Ben-Chen, M., Gotsman, C.: Complex barycentric coordinates with applications to planar shape deformation. Comput. Graph. Forum 28(2), 587–597 (2009) CrossRefGoogle Scholar
  20. 20.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zheng Li
    • 1
  • David Levin
    • 2
  • Zhengjie Deng
    • 1
  • Dingyuan Liu
    • 1
  • Xiaonan Luo
    • 1
  1. 1.Sun Yat-sen UniversityGuangzhouChina
  2. 2.Tel-Aviv UniversityTel-AvivIsrael

Personalised recommendations