Advertisement

The Visual Computer

, Volume 26, Issue 11, pp 1393–1406 | Cite as

A lightweight approach to repairing digitized polygon meshes

  • Marco AtteneEmail author
Original Article

Abstract

When designing novel algorithms for geometric processing and analysis, researchers often assume that the input conforms to several requirements. On the other hand, polygon meshes obtained from acquisition of real-world objects typically exhibit several defects, and thus are not appropriate for a widespread exploitation.

In this paper, an algorithm is presented that strives to convert a low-quality digitized polygon mesh to a single manifold and watertight triangle mesh without degenerate or intersecting elements. Differently from most existing approaches that globally resample the model to produce a fixed version, the algorithm presented here attempts to modify the input mesh only locally within the neighborhood of undesired configurations.

After having converted the input to a single combinatorial manifold, the algorithm proceeds iteratively by removing growing neighborhoods of undesired elements and by patching the resulting surface gaps until all the “defects" are removed. Though this heuristic approach is not guaranteed to converge, it was tested on more than 400 low-quality models and always succeeded. Furthermore, with respect to similar existing algorithms, it proved to be computationally efficient and produced more accurate results while using fewer triangles.

Keywords

3D scanning Self-intersection Degeneracy Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AIM@SHAPE shape repository (2004). http://shapes.aimatshape.net/
  2. 2.
    Albertoni, R., Papaleo, L., Robbiano, F., Spagnuolo, M.: Towards a conceptualization for shape acquisition and processing. In: Proc. of 1st International Workshop on Shapes and Semantics (2006) Google Scholar
  3. 3.
    Attene, M., Falcidieno, B.: Remesh: An interactive environment to edit and repair triangle meshes. In: Shape Modeling and Applications, pp. 271–276 (2006) Google Scholar
  4. 4.
    Attene, M., Mortara, M., Spagnuolo, M., Falcidieno, B.: Hierarchical convex approximation for fast region selection. Comput. Graph. Forum 27(5), 1323–1333 (2008) CrossRefGoogle Scholar
  5. 5.
    Barequet, G., Sharir, M.: Filling gaps in the boundary of a polyhedron. Comput. Aided Geom. Des. 12(2), 207–229 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Biasotti, S., Attene, M.: Shrec08 entry: Report of the stability track on watertight models. In: Shape Modeling and Applications (2008) Google Scholar
  7. 7.
    Bischoff, S., Kobbelt, L.: Structure preserving cad model repair. Comput. Graph. Forum 24(3), 527–536 (2005) CrossRefGoogle Scholar
  8. 8.
    Bischoff, S., Pavic, D., Kobbelt, L.: Automatic restoration of polygon models. ACM Trans. Graph. 24(4), 1332–1352 (2005) CrossRefGoogle Scholar
  9. 9.
    Borodin, P., Novotni, M., Klein, R.: Progressive gap closing for mesh repairing. In: Advances in Modelling, Animation and Rendering, pp. 201–213 (2002) Google Scholar
  10. 10.
    Botsch, M., Kobbelt, L.: A robust procedure to eliminate degenerate faces from triangle meshes. In: Vision, Modeling and Visualization, pp. 283–290 (2001) Google Scholar
  11. 11.
    Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Levy, B., Bischoff, S., Roessl, C.: Geometric modeling based on polygonal meshes. In: SIGGRAPH Course Notes (2007) Google Scholar
  12. 12.
    Branch, J., Prieto, F., Boulanger, P.: Automatic hole-filling of triangular meshes using local radial basis function. In: Proceedings of 3DPVT’06, pp. 727–734 (2006) Google Scholar
  13. 13.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998) CrossRefGoogle Scholar
  14. 14.
    Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: Int. Symposium on 3D Data Processing, Visualization, Transmission, pp. 428–438 (2002) Google Scholar
  15. 15.
    Dey, T.K., Edelsbrunner, H., Guha, S., Nekhayev, D.: Topology preserving edge contraction. Publ. Inst. Math. (Beograd) 20(80), 23–45 (1999) MathSciNetGoogle Scholar
  16. 16.
    Floriani, L.D., Morando, F., Puppo, E.: Representation of non-manifold objects through decomposition into nearly manifold parts. In: ACM Solid Modeling, pp. 304–309 (2003) Google Scholar
  17. 17.
    Geomagic, Inc. Geomagic Studio. http://www.geomagic.com/
  18. 18.
    Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: A hierarchical structure for rapid interference detection. In: ACM Siggraph Proceedings, pp. 171–180 (1996) Google Scholar
  19. 19.
    Guéziec, A., Taubin, G., Lazarus, F., Horn, B.: Cutting and stitching: Converting sets of polygons to manifold surfaces. IEEE Trans. Vis. Comput. Graph. 7(2), 136–151 (2001) CrossRefGoogle Scholar
  20. 20.
    Guibas, L., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms from imprecise computations. In: ACM Symposium on Computational Geometry, pp. 208–217 (1989) Google Scholar
  21. 21.
    Guskov, I., Wood, Z.: Topological noise removal. In: Proceedings of Graphics Interface, pp. 19–26 (2001) Google Scholar
  22. 22.
    InnovMetric Software, Inc. Polyworks. http://www.innovmetric.com/
  23. 23.
    INUS Technology, Inc. Rapidform. http://www.rapidform.com/
  24. 24.
    Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004) CrossRefGoogle Scholar
  25. 25.
    Liepa, P.: Filling holes in meshes. In: Eurographics Symposium on Geometry Processing, pp. 200–205 (2003) Google Scholar
  26. 26.
    Murali, T., Funkhouser, T.: Consistent solid and boundary representations from arbitrary polygonal data. In: Proceedings of Symposium on Interactive 3D Graphics, pp. 155–162 (1997) Google Scholar
  27. 27.
    Nooruddin, F., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. ACM Trans. Vis. Comput. Graph. 9(2), 191–205 (2003) CrossRefGoogle Scholar
  28. 28.
    Podolak, J., Rusinkiewicz, S.: Atomic volumes for mesh completion. In: Eurographics Symposium on Geometry Processing, pp. 33–42 (2005) Google Scholar
  29. 29.
    Rocchini, C., Cignoni, P., Ganovelli, F., Montani, C., Pingi, P., Scopigno, R.: The marching intersections algorithm for merging range images. Vis. Comput. 20(2–3), 149–164 (2004) CrossRefGoogle Scholar
  30. 30.
    Rossignac, J., Cardoze, D.: Matchmaker: manifold breps for non-manifold r-sets. In: Proc. of 5th ACM Symposium on Solid Modeling and Applications, pp. 31–41 (1999) Google Scholar
  31. 31.
    Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise Linear Topology. Springer, Berlin (1972) zbMATHGoogle Scholar
  32. 32.
    Samet, H.: Spatial Data Structures: Quadtrees, Octrees and Other Hierarchical Methods. Addison Wesley, Reading (1989) Google Scholar
  33. 33.
    Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. Theory Appl. 22(1–3), 21–74 (2002) zbMATHMathSciNetGoogle Scholar
  34. 34.
    Si, H., Gaertner, K.: Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In: Proceedings of the 14th International Meshing Roundtable, pp. 147–163 (2005) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.IMATI-GE / CNRGenovaItaly

Personalised recommendations