Guiding flows for controlling crowds


In this paper, we present a novel method for controlling massive crowds by using control particles. Our method differs from previous ones that generate attraction (or repelling) forces around the control particles. Instead of doing this, we create a steady-state, flow-like control field that guides the crowd to move along with the control particles. Our control field can be naturally incorporated into the original simulation by using density-based weighted blending. Although we focus on simulation methods that use dynamic potential functions, our method can also be used to improve the controllability of agent-based simulation methods. Since the control particles can be easily manipulated by traditional key-framing, our method provides animators with an intuitive interface for manipulating the position of crowd over time. We illustrate the effectiveness of our method on several examples.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    Chenney, S.: Flow tiles. In: 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 233–242 (2004)

  2. 2.

    Courty, N., Corpetti, T.: Crowd motion capture. Comput. Animat. Virtual Worlds 18, 361–370 (2007)

  3. 3.

    Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. ACM Trans. Graph. 18, 29–38 (1999)

  4. 4.

    Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.: Scalable nonlinear dynamical systems for agent steering and crowd simulation. Comput. Graph. 11(1), 111 (2001)

  5. 5.

    Hong, J., Kim, C.: Controlling fluid animation with geometric potential. Comput. Animat. Virtual Worlds 15, 147–157 (2004)

  6. 6.

    Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182 (2003)

  7. 7.

    Jin, X., Xu, J., Wang, C., Huang, S., Zhang, J.: Interactive control of large-crowd navigation in virtual environments using vector fields. IEEE Comput. Graph. Appl. 28(6), 37–46 (2008)

  8. 8.

    Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. ACM Trans. Graph. 27(3), 111 (2008)

  9. 9.

    Lamarche, F., Donikian, S.: Crowd of virtual humans: A new approach for real time navigation in complex and structured environments. Comput. Graph. Forum 23(3), 509–518 (2004)

  10. 10.

    Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: A data-driven approach to crowd simulation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, p. 111 (2007)

  11. 11.

    Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26(3), 655–664 (2007)

  12. 12.

    Lerner, A., Fitusi, E., Chrysanthou, Y., Cohen-Or, D.: Fitting behaviors to pedestrian simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 199–208 (2009)

  13. 13.

    Lin, M.C., Sud, A., van den Berg, J., Gayle, R., Curtis, S., Yeh, H.n, Guy, S., Andersen, E., Patil, S., Sewall, J., Manocha, D.: Real-time path planning and navigation for multi-agent and crowd simulations. In: Motion in Games: First International Workshop, MIG 2008, Utrecht, The Netherlands, June 14–17, 2008. Revised Papers, pp. 23–32 (2008)

  14. 14.

    Massive Software Inc.: Massive Software (2006).

  15. 15.

    McNamara, A., Treuille, A., Popovic̀, Z., Stam, J.: Fluid control using the adjoint method. ACM Trans. Graph. 23(3), 449–456 (2004)

  16. 16.

    Musse, S.R., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and collision detection analysis. In: Computer Animation and Simulation, pp. 39–51 (1997)

  17. 17.

    Musse, S.R., Jung, C.R., Jacques, J. Jr., Braun, A.: Using computer vision to simulate the motion of virtual agents. Comput. Animat. Virtual Worlds 18, 83–93 (2007)

  18. 18.

    Park, S.I., Shin, H.J., Kim, T.H., Shin, S.Y.: On-line motion blending for real-time locomotion generation. Comput. Animat. Virtual Worlds 15(3–4), 125–138 (2004)

  19. 19.

    Pettre, J., Laumond, J.-P., Thalmann, D.: A navigation graph for real-time crowd animation on multilayered and uneven terrain. In: First International Workshop on Crowd Simulation (2005)

  20. 20.

    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++. Cambridge University Press, Cambridge (2001)

  21. 21.

    Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987). (SIGGRAPH’87 Conference Proceedings)

  22. 22.

    Reynolds, C.: Steering behaviors for autonomous characters. In: Proc. of Game Developers Conference (GDC) 1999, pp. 763–782 (1999)

  23. 23.

    Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graph. Models 69, 246–274 (2007). (ACM SIGGRAPH/Eurographics Symposium on Computer Animation)

  24. 24.

    Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24, 140–164 (2005)

  25. 25.

    Sung, M., Gleicher, M., Chenny, S.: Scalable behaviors for crowd simulation. Comput. Graph. Forum 23(3), 519–528 (2004)

  26. 26.

    Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motion synthesis for crowds. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 291–300 (2005)

  27. 27.

    Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Trans. Graph. 11(1), 111 (2006)

  28. 28.

    Wejchert, J., Haumann, D.: Animation aerodynamics. In: International Conf. on Computer Graphics and Interactive Techniques, pp. 19–22 (2004)

  29. 29.

    Wojtan, C., Mucha, P.J., Turk, G.: Keyframe control of complex particle systems using the adjoint method. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 1–9 (2006)

Download references

Author information

Correspondence to Min Je Park.

Electronic Supplementary Material

Guiding Flows for Controlling Crowds (MPG 18.8 MB)

Guiding Flows for Controlling Crowds (MPG 18.8 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, M.J. Guiding flows for controlling crowds. Vis Comput 26, 1383–1391 (2010) doi:10.1007/s00371-009-0415-4

Download citation

  • Crowd simulation
  • Key-frame animation
  • Interactive control