Advertisement

The Visual Computer

, Volume 26, Issue 11, pp 1361–1368 | Cite as

The multi-LREP decomposition of solids and its application to a point-in-polyhedron inclusion test

  • Francisco MartínezEmail author
  • Antonio J. Rueda
  • Francisco R. Feito
Original Article

Abstract

This paper presents a scheme for decomposing polyhedra called multi-LREP. The scheme is based on the L-REP decomposition, which classifies the triangular faces of a polyhedron into a set of layered tetrahedra. In the multi-LREP these layered tetrahedra are grouped into regions of a space subdivision. The paper also describes an efficient method for constructing the L-REP decomposition and how the multi-LREP can be applied to speed up two L-REP applications: the point-in-polyhedron inclusion test and the ray-scene intersection. An experimental comparison with other point-in-polyhedron tests is presented as well.

Spatial data structures Solid modeling Geometric algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akenine, M., Haines, E.: Real-time Rendering, 2nd edn. A.K. Peters, Natick (2002), p. 835 Google Scholar
  2. 2.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopt, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000), p. 367 zbMATHGoogle Scholar
  3. 3.
    Bergen, G.: Efficient collision detection of complex deformable models using AABB tress. J. Graph. Tools 2(4), 1–13 (1997) zbMATHGoogle Scholar
  4. 4.
    Feito, F.R., Torres, J.C.: Inclusion test for general polyhedra. Comput. Graph. 21(1), 23–30 (1997) CrossRefGoogle Scholar
  5. 5.
    Glassner, A.S.: Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 4(10), 15–22 (1984) Google Scholar
  6. 6.
    Haines, E.: Point in polygon strategies. In: Heckbert, P. (ed.) Graphics Gems IV, pp. 24–45. Academic Press, San Diego (1994) Google Scholar
  7. 7.
    Martínez, F., Rueda, A.J., Feito, F.R.: The multi-L-REP decomposition and its application to a point-in-polygon inclusion test. Comput. Graph. 30(6), 947–958 (2006) CrossRefGoogle Scholar
  8. 8.
    Ogayar, C.J., Segura, R.J., Feito, F.R.: Point in solid strategies. Comput. Graph. 29(4), 616–624 (2005) CrossRefGoogle Scholar
  9. 9.
    Rueda, A.J., Feito, F.R., Ortega, L.M.: Layer-based decomposition of solids and its applications. Vis. Comput. 21(6), 406–417 (2005) CrossRefGoogle Scholar
  10. 10.
    Rueda, A.J., Feito, F.R., Rivero, M.L.: A triangle-based representation for polygons and its applications. Comput. Graph. 26(5), 805–814 (2002) CrossRefGoogle Scholar
  11. 11.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Mateo (2006), p. 993 zbMATHGoogle Scholar
  12. 12.
    Wang, W., Li, J., Sun, H., Wu, E.: Layer-based representation of polyhedrons for point containment test. IEEE Trans. Vis. Comput. Graph. 14(1), 73–83 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Francisco Martínez
    • 1
    Email author
  • Antonio J. Rueda
    • 1
  • Francisco R. Feito
    • 1
  1. 1.Departamento de InformáticaUniversidad de JaénJaénSpain

Personalised recommendations