The Visual Computer

, Volume 26, Issue 11, pp 1349–1360 | Cite as

Color-to-gray conversion using ISOMAP

  • Ming Cui
  • Jiuxiang Hu
  • Anshuman Razdan
  • Peter Wonka
Original Article

Abstract

In this paper we present a new algorithm to transform an RGB color image to a grayscale image. We propose using nonlinear dimension reduction techniques to map higher dimensional color vectors to lower dimensional ones. This approach generalizes the gradient domain manipulation for high dimensional images. Our experiments show that the proposed algorithm generates competitive results and reaches a good compromise between quality and speed.

ISOMAP Color to gray Color space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artusi, A., Bittner, J., Wimmer, M., Wilkie, A.: Delivering interactivity to complex tone mapping operators. In: Christensen, P., Cohen-Or, D. (eds.) Rendering Techniques 2003 (Proceedings Eurographics Symposium on Rendering), pp. 38–44. Eurographics, Eurographics Association (June 2003) Google Scholar
  2. 2.
    Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometry in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 43(3), 441–454 (2005) CrossRefGoogle Scholar
  3. 3.
    Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Improved manifold coordinate representations of large scale hyperspectral scenes. IEEE Trans. Geosci. Remote Sens. 44(10), 2786–2802 (2006) CrossRefGoogle Scholar
  4. 4.
    Bala, R., Braun, K.M.: Color-to-grayscale conversion to maintain discriminability. In: SPIE Conference Series. SPIE Conference Series, vol. 5293, pp. 196–202 (December 2003) Google Scholar
  5. 5.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003) MATHCrossRefGoogle Scholar
  6. 6.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications, 2nd edn. Springer, Berlin (2005) MATHGoogle Scholar
  7. 7.
    Čadík, M.: Perceptual evaluation of color-to-grayscale image conversions. Comput. Graph. Forum 27(7), 1745–1754 (2008) CrossRefGoogle Scholar
  8. 8.
    Cai, N., Younan, S., Du, N., Raksuntorn, Q.: Color representation and classification for hyperspectral imagery. In: IGARSS, pp. 537–540 (Aug 2006) Google Scholar
  9. 9.
    Cui, M., Razdan, A., Hu, J., Wonka, P.: Interactive hyperspectral image visualization using convex optimization. IEEE Trans. Geosci. Remote Sens. 47(6), 1673–1684 (2009) CrossRefGoogle Scholar
  10. 10.
    de Silva, V., Tenenbaum, J.: Global versus local methods in nonlinear dimensionality reduction (2003) Google Scholar
  11. 11.
    de Silva, V., Tenenbaum, B.: Sparse multidimensional scaling using landmark points. Technical Report (2004) Google Scholar
  12. 12.
    Donoho, D., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266 (2002) CrossRefGoogle Scholar
  14. 14.
    Fairchild, M.D. (ed.): Color Appearance Models. Wiley-IST (2005) Google Scholar
  15. 15.
    Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28(3), 1–10 (2009) CrossRefGoogle Scholar
  16. 16.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 249–256. ACM, New York (2002) CrossRefGoogle Scholar
  17. 17.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2gray: Salience-preserving color removal. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pp. 634–639. ACM, New York (2005) CrossRefGoogle Scholar
  18. 18.
    Grundland, M., Dodgson, N.A.: Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recogn. 40(11), 2891–2896 (2007) CrossRefGoogle Scholar
  19. 19.
    Han, T., Goodenough, D.G.: Investigation of nonlinearity in hyperspectral remotely sensed imagery: A nonlinear time series analysis approach. In: IGARSS, pp. 1556–1560 (July 2007) Google Scholar
  20. 20.
    Jacobson, N.P., Gupta, M.R.: Design goals and solutions for display of hyperspectral images. 43(11), 2684–2692 (2005) Google Scholar
  21. 21.
    Ledda, P., Chalmers, A., Troscianko, T., Seetzen, H.: Evaluation of tone mapping operators using a High Dynamic Range display. ACM Trans. Graph. 24(3), 640–648 (2005) CrossRefGoogle Scholar
  22. 22.
    Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph 24(3), 836–844 (2005) CrossRefGoogle Scholar
  23. 23.
    Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pp. 646–653. ACM, New York (2006) CrossRefGoogle Scholar
  24. 24.
    Mantiuk, R., Myszkowski, K., Seidel, H.-P.: A perceptual framework for contrast processing of high dynamic range images. ACM Trans. Appl. Percept. 3(3), 286–308 (2006) CrossRefGoogle Scholar
  25. 25.
    Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral clustering and eigenfunctions of Fokker–Planck operators. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 955–962. MIT Press, Cambridge (2006) Google Scholar
  26. 26.
    Park, S.H., Montag, E.D.: Evaluating tone mapping algorithms for rendering non-pictorial (scientific) high-dynamic-range images. J. Vis. Commun. Image Represent. 18(5), 415–428 (2007) CrossRefGoogle Scholar
  27. 27.
    Rasche, G.R.K., Westall, J.: Re-coloring images for gamuts of lower dimension. Comput. Graph. Forum 24(3), 423–432 (2005) CrossRefGoogle Scholar
  28. 28.
    Rasche, K., Geist, R., Westall, J.: Detail preserving reproduction of color images for monochromats and dichromats. IEEE Comput. Graph. Appl. 25(3), 22–30 (2005) CrossRefGoogle Scholar
  29. 29.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002) (Proceedings of SIGGRAPH 2002 Annual Conference) CrossRefGoogle Scholar
  30. 30.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000) CrossRefGoogle Scholar
  31. 31.
    Sha, F., Saul, L.K.: Analysis and extension of spectral methods for nonlinear dimensionality reduction. In: ICML ’05: Proceedings of the 22nd International Conference on Machine Learning, pp. 784–791. ACM, New York (2005) CrossRefGoogle Scholar
  32. 32.
    Smith, R. (ed.): Analyzing Hyperspectral Images with TNTmips. Microimages (2006) Google Scholar
  33. 33.
    Smith, K., Landes, P.-E., Thollot, J., Myszkowski, K.: Apparent greyscale: A simple and fast conversion to perceptually accurate images and video. Comput. Graph. Forum 27(2) (Apr 2008) (Proceedings of Eurographics 2008) Google Scholar
  34. 34.
    Socolinsky, D.A., B Wolff, L.: Multispectral image visualization through first-order fusion. IEEE Trans. Image Process. 11(8), 923–931 (2002) CrossRefGoogle Scholar
  35. 35.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000) CrossRefGoogle Scholar
  36. 36.
    Thomas, B.A., Strickland, R.N., Rodriguez, J.J.: Color image enhancement using spatially adaptive saturation feedback. In: ICIP ’97, vol. 3, p. 30. Washington, DC, USA, 1997. IEEE Comput. Soc., Los Alamitos (1997) Google Scholar
  37. 37.
    Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. IEEE Comput. Graph. Appl. 13(6), 42–48 (1993) CrossRefGoogle Scholar
  38. 38.
    Tyo, J.S., Konsolakis, A., Diersen, D.I., Olsen, R.C.: Principal-components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 41(3), 708–718 (2003) CrossRefGoogle Scholar
  39. 39.
    Wang, J., Chang, C.I.: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 44(6), 1586–1600 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ming Cui
    • 1
  • Jiuxiang Hu
    • 1
  • Anshuman Razdan
    • 1
  • Peter Wonka
    • 1
  1. 1.Arizona State UniversityPhoenixUSA

Personalised recommendations