Advertisement

The Visual Computer

, Volume 26, Issue 9, pp 1229–1239 | Cite as

An MLS-based cartoon deformation

  • Yang ShenEmail author
  • Lizhuang Ma
  • Hai Liu
Original Article

Abstract

We present an image deformation method driven by skeleton; it is based on MLS deformation algorithm (Schaefer et al. in SIGGRAPH, vol. 25, pp. 533–540, 2006). We improve the MLS deformation by defining a new weight function based on skeleton. Being different from the weight function based on control points, our weight function has benefited from the shape information of undeformed object and keeps deformation local, therefore our method can achieve a realistic effect. In cartoon video, we propose a new method to track the skeleton in the video, to build new origin skeleton and new target skeleton on each frame, and to apply our image deformation method to each frame and maintain spatiotemporal consistency. Results demonstrate that our method is able to decrease the effect of squeeze and use less control points.

Deformation MLS Cartoon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material. (MPG 17.3 MB)

References

  1. 1.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. PAMI 22, 567–585 (1989) Google Scholar
  2. 2.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. ECCV 12(1), 25–36 (2004) Google Scholar
  3. 3.
    Chen, T., Cheng, M.-M., Tan, P., Shamir, A., Hu, S.-M.: Sketch2photo: Internet image montage. ACM Trans. Graph. (to appear) Google Scholar
  4. 4.
    Cuno, A., Esperanca, C., Oliveira, A., Cavalcanti, P.R.: 3D as-rigid-as-possible deformations using MLS (2008) Google Scholar
  5. 5.
    Igarashi, T., Moscovich, T., Hughes, J.: As-rigid-as-possible shape manipulation. In: SIGGRAPH, vol. 24, pp. 1134–1141 (2005) Google Scholar
  6. 6.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007) CrossRefGoogle Scholar
  7. 7.
    Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral filtering-based optical flow estimation with occlusion detection. ECCV 9(4), 211–224 (2006) Google Scholar
  8. 8.
    Lee, S.Y., Chwa, K.Y., Shin, S.Y.: Image metamorphosis using snakes and free-form deformations. Comput. Graph. (Ann. Conf. Ser.) 29, 439–448 (1995) Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004) CrossRefGoogle Scholar
  10. 10.
    Mohr, A., Tokheim, L., Gleicher, M.: Direct manipulation of interactive character skins. In: Proceedings of the 2003 symposium on Interactive 3D Graphics, pp. 27–30. ACM, New York (2003) CrossRefGoogle Scholar
  11. 11.
    Price, B., Barrett, W.: Object-based vectorization for interactive image editing. Vis. Comput. 22(9), 661–670 (2006) CrossRefGoogle Scholar
  12. 12.
    Sand, P.: Particle video: Long-range motion estimation using point trajectories. In: CVPR, vol. 24, pp. 2195–2202 (2006) Google Scholar
  13. 13.
    Rustamov, R., Lipman, Y., Funkhouser, T.: Interior distance using barycentric coordinates. In: Computer Graphics Forum (Symposium on Geometry Processing), 28(5), July 2009 Google Scholar
  14. 14.
    Schaefer, S., Mcphail, T., Warren, J.D.: Image deformation using moving least squares. In: SIGGRAPH, vol. 25, pp. 533–540 (2006) Google Scholar
  15. 15.
    Schiwietz, T., Georgii, J., Westermann, R.: Free-form image, pp. 27–36 (2007) Google Scholar
  16. 16.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: SIGGRAPH ’86: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 151–160. ACM, New York (1986) CrossRefGoogle Scholar
  17. 17.
    Weng, Y.-L., Shi, X.-H., Bao, H.-J.: Sketching mls image deformation on the GPU. Comput. Graph. Forum 27(7), 1789–1796 (2008) CrossRefGoogle Scholar
  18. 18.
    Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006) CrossRefGoogle Scholar
  19. 19.
    Xu, K., Li, Y., Ju, T., Hu, S.-M., Liu, T.-Q.: Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. (to appear) Google Scholar
  20. 20.
    Yan, H.-B., Hu, S., Martin, R.R., Yang, Y.-L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14(3), 693–706 (2008) CrossRefGoogle Scholar
  21. 21.
    Zhang, G.-X., Cheng, M.-M., Hu, S.-M., Liu, R.R.M.: A shape-preserving approach to image resizing. Comput. Graph. Forum 28, 2009 (1897–1906) Google Scholar
  22. 22.
    Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M.: Vectorizing cartoon animations. TVCG 99(2), 1077–2626 (2009) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations