The Visual Computer

, Volume 26, Issue 3, pp 205–215 | Cite as

An intuitive polygon morphing

  • Martina Málková
  • Jindřich Parus
  • Ivana Kolingerová
  • Bedřich Beneš
Original Article

Abstract

We present a new algorithm for morphing simple polygons that is inspired by growing forms in nature. While previous algorithms require user-assisted definition of complicated correspondences between the morphing objects, our algorithm defines the correspondence by overlapping the input polygons. Once the morphing of one object into another is defined, very little or no user interaction is necessary to achieve intuitive results. Our algorithm is suitable namely for growth-like morphing. We present the basic algorithm and its three variations. One of them is suitable mainly for convex polygons, the other two are for more complex polygons, such as curved or spiral polygonal forms.

Keywords

Morphing Vector data Polygon intersection Computer Graphics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material. (228 kB)

References

  1. 1.
    Alexa, M.: Merging polyhedral shapes with scattered features. Vis. Comput. 16(1), 26–37 (2000) MATHCrossRefGoogle Scholar
  2. 2.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: Proceedings of SIGGRAPH 2000, pp. 157–164 (2000) Google Scholar
  3. 3.
    Carmel, E., Cohen-Or, D.: Warp-guided object-space morphing. Vis. Comput. 13, 465–478 (1997) CrossRefGoogle Scholar
  4. 4.
    Comninos, P.: Mathematical and Computer Programming Techniques for Computer Graphics. Springer, Berlin (2006) Google Scholar
  5. 5.
    Gomes, J., Darsa, L., Costa, B., Velho, L.: Warping and Morphing of Graphical Objects. Morgan Kaufmann, San Mateo (1999) Google Scholar
  6. 6.
    Johnstone, J.K., Wu, X.: Morphing two polygons into one. In: The 40th Annual Southeast ACM Conference (2002) Google Scholar
  7. 7.
    Kent, J.R., Carlson, R.E., Parent, W.E.: Shape transformation for polyhedral objects. Comput. Graph. 26, 47–54 (1992) CrossRefGoogle Scholar
  8. 8.
    Málková, M.: Core-based morphing algorithm for triangle meshes. In: SIGRAD 2008, vol. 34, pp. 39–46 (2008) Google Scholar
  9. 9.
    Sederberg, T.W., Gao, P., Mu, G., Wang, H.: 2-d shape blending: An intrinsic solution to the vertex path problem. Comput. Graph. 27, 15–18 (1993) CrossRefGoogle Scholar
  10. 10.
    Sederberg, T.W., Greenwood, E.: A physically based approach to 2-d shape blending. ACM SIGGRAPH 26, 25–34 (1992) CrossRefGoogle Scholar
  11. 11.
    Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. IEEE Comput. Graph. Appl. 15, 44–50 (1995) CrossRefGoogle Scholar
  12. 12.
    Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangulations. ACM Trans. Graph. 20, 203–231 (2001) CrossRefGoogle Scholar
  13. 13.
    Surazhsky, V., Gotsman, C.: Intrinsic morphing of compatible triangulations. Int. J. Shape Model. 9, 191–201 (2003) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martina Málková
    • 1
  • Jindřich Parus
    • 1
  • Ivana Kolingerová
    • 1
  • Bedřich Beneš
    • 2
  1. 1.University of West BohemiaPlzeňCzech Republic
  2. 2.Purdue UniversityWest LafayetteUSA

Personalised recommendations