The Visual Computer

, Volume 26, Issue 3, pp 187–204 | Cite as

Boundary fitting for 2D curve reconstruction

  • Yuqing SongEmail author
Original Article


In this paper we present a 3-step algorithm for reconstructing curves from unorganized points: data clustering to filter out the noise, data confining to get the boundary, and region thinning to find the skeleton curve. The method is effective in removing far-from-the-shape noise and in handling a shape of changing density. The algorithm takes O(nlog n) time and O(n) space for a set of n points.


Curve fitting Boundary fitting Voronoi tree Isolation compactness Boundary compactness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levin, D.: The approximation power of moving least squares. Math. Comput. 67, 1517–1531 (1998) zbMATHCrossRefGoogle Scholar
  2. 2.
    Lee, I.-K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17, 161–177 (2000) CrossRefGoogle Scholar
  3. 3.
    Lin, H., Chen, W., Wang, G.: Curve reconstruction based on interval B-spline curve. Vis. Comput. 21(6), 418–427 (2005) CrossRefGoogle Scholar
  4. 4.
    Cheng, S.-W., Funke, S., Golin, M., Kumar, P., Poon, S.-H., Ramos, E.: Curve reconstruction from noisy samples. Comput. Geom. 31, 63–100 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edelsbrummer, H., Mucke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994) CrossRefGoogle Scholar
  6. 6.
    Krasnoshchekov, D.N., Polishchuk, V.: Robust curve reconstruction with k-order alpha-shapes. In: International Conference on Shape Modeling and Applications (SMI 2008), pp. 279–280 (2008) Google Scholar
  7. 7.
    Ohbuchi, R., Takei, T.: Shape-similarity comparison of 3D models using alpha shapes. In: Pacific Conference on Computer Graphics and Applications, pp. 293–302 (2003) Google Scholar
  8. 8.
    Albou, L., et al.: Defining and characterizing protein surface using alpha shapes. Proteins 76(1), 1–12 (2008) CrossRefGoogle Scholar
  9. 9.
    De-Alarcón, P., Pascual-Montano, A., Gupta, A., Carazo, J.: Modeling shape and topology of low-resolution density maps of biological macromolecules. Biophys. J. 83(2), 619–632 (2002) CrossRefGoogle Scholar
  10. 10.
    Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18, 54–64 (1969) CrossRefMathSciNetGoogle Scholar
  11. 11.
    West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (1996) zbMATHGoogle Scholar
  12. 12.
    Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C20(1), 68–86 (1971) CrossRefGoogle Scholar
  13. 13.
    Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992) CrossRefGoogle Scholar
  14. 14.
    Jonyer, I., Holder, L.B., Cook, D.J.: Graph-based hierarchical conceptual clustering. J. Mach. Learn. Res. 2, 19–43 (2002) zbMATHCrossRefGoogle Scholar
  15. 15.
    Kawaji, H., Takenaka, Y., Matsuda, H.: Graph-based clustering for finding distant relationships in a large set of protein sequences. Bioinformatics 20(2), 243–252 (2004) CrossRefGoogle Scholar
  16. 16.
    Olson, C.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21, 1313–1325 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shi, Y., Song, Y., Zhang, A.: A shrinking-based clustering approach for multi-dimensional data. IEEE Trans. Knowl. Data Eng. 17(10), 1389–1403 (2005) CrossRefGoogle Scholar
  18. 18.
    Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci., pp. 151–162 (1975) Google Scholar
  19. 19.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W. (ed.) Symposium Models for Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967) Google Scholar
  20. 20.
    Arcelli, C., di Baja, G.S.: Ridge points in Euclidean distance maps. Pattern Recogn. Lett. 13(4), 237–243 (1992) CrossRefGoogle Scholar
  21. 21.
    Lee, Y.-H., Horng, S.-J.: The chessboard distance transform and the medial axis transform are interchangeable. In: The 10th International Parallel Processing Symposium, pp. 424–428 (1996) Google Scholar
  22. 22.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Key Laboratory of Intelligent Information Processing, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations