Advertisement

The Visual Computer

, Volume 26, Issue 3, pp 187–204 | Cite as

Boundary fitting for 2D curve reconstruction

  • Yuqing SongEmail author
Original Article

Abstract

In this paper we present a 3-step algorithm for reconstructing curves from unorganized points: data clustering to filter out the noise, data confining to get the boundary, and region thinning to find the skeleton curve. The method is effective in removing far-from-the-shape noise and in handling a shape of changing density. The algorithm takes O(nlog n) time and O(n) space for a set of n points.

Keywords

Curve fitting Boundary fitting Voronoi tree Isolation compactness Boundary compactness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levin, D.: The approximation power of moving least squares. Math. Comput. 67, 1517–1531 (1998) zbMATHCrossRefGoogle Scholar
  2. 2.
    Lee, I.-K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17, 161–177 (2000) CrossRefGoogle Scholar
  3. 3.
    Lin, H., Chen, W., Wang, G.: Curve reconstruction based on interval B-spline curve. Vis. Comput. 21(6), 418–427 (2005) CrossRefGoogle Scholar
  4. 4.
    Cheng, S.-W., Funke, S., Golin, M., Kumar, P., Poon, S.-H., Ramos, E.: Curve reconstruction from noisy samples. Comput. Geom. 31, 63–100 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edelsbrummer, H., Mucke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994) CrossRefGoogle Scholar
  6. 6.
    Krasnoshchekov, D.N., Polishchuk, V.: Robust curve reconstruction with k-order alpha-shapes. In: International Conference on Shape Modeling and Applications (SMI 2008), pp. 279–280 (2008) Google Scholar
  7. 7.
    Ohbuchi, R., Takei, T.: Shape-similarity comparison of 3D models using alpha shapes. In: Pacific Conference on Computer Graphics and Applications, pp. 293–302 (2003) Google Scholar
  8. 8.
    Albou, L., et al.: Defining and characterizing protein surface using alpha shapes. Proteins 76(1), 1–12 (2008) CrossRefGoogle Scholar
  9. 9.
    De-Alarcón, P., Pascual-Montano, A., Gupta, A., Carazo, J.: Modeling shape and topology of low-resolution density maps of biological macromolecules. Biophys. J. 83(2), 619–632 (2002) CrossRefGoogle Scholar
  10. 10.
    Gower, J.C., Ross, G.J.S.: Minimum spanning trees and single linkage cluster analysis. Appl. Stat. 18, 54–64 (1969) CrossRefMathSciNetGoogle Scholar
  11. 11.
    West, D.B.: Introduction to Graph Theory. Prentice Hall, New York (1996) zbMATHGoogle Scholar
  12. 12.
    Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C20(1), 68–86 (1971) CrossRefGoogle Scholar
  13. 13.
    Jaromczyk, J., Toussaint, G.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992) CrossRefGoogle Scholar
  14. 14.
    Jonyer, I., Holder, L.B., Cook, D.J.: Graph-based hierarchical conceptual clustering. J. Mach. Learn. Res. 2, 19–43 (2002) zbMATHCrossRefGoogle Scholar
  15. 15.
    Kawaji, H., Takenaka, Y., Matsuda, H.: Graph-based clustering for finding distant relationships in a large set of protein sequences. Bioinformatics 20(2), 243–252 (2004) CrossRefGoogle Scholar
  16. 16.
    Olson, C.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21, 1313–1325 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shi, Y., Song, Y., Zhang, A.: A shrinking-based clustering approach for multi-dimensional data. IEEE Trans. Knowl. Data Eng. 17(10), 1389–1403 (2005) CrossRefGoogle Scholar
  18. 18.
    Shamos, M.I., Hoey, D.: Closest-point problems. In: Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci., pp. 151–162 (1975) Google Scholar
  19. 19.
    Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W. (ed.) Symposium Models for Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967) Google Scholar
  20. 20.
    Arcelli, C., di Baja, G.S.: Ridge points in Euclidean distance maps. Pattern Recogn. Lett. 13(4), 237–243 (1992) CrossRefGoogle Scholar
  21. 21.
    Lee, Y.-H., Horng, S.-J.: The chessboard distance transform and the medial axis transform are interchangeable. In: The 10th International Parallel Processing Symposium, pp. 424–428 (1996) Google Scholar
  22. 22.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Key Laboratory of Intelligent Information Processing, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina

Personalised recommendations