Advertisement

The Visual Computer

, Volume 26, Issue 2, pp 147–155 | Cite as

Segmenting animated objects into near-rigid components

  • Stefanie Wuhrer
  • Alan Brunton
Original Article

Abstract

We present a novel approach to solve the problem of segmenting a sequence of animated objects into near-rigid components based on k given poses of the same non-rigid object. We model the segmentation problem as a clustering problem in dual space and find near-rigid segments with the property that segment boundaries are located at regions of large deformation. The presented approach is asymptotically faster than previous approaches that achieve the same property and does not require any user-specified parameters. However, if desired, the user may interactively change the number of segments. We demonstrate the practical value of our approach using experiments.

Keywords

Segmentation Geometry processing Computational geometry Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Uncertainty in Artificial Intelligence Conference (2004) Google Scholar
  2. 2.
    Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3) (2007). Proceedings of SIGGRAPH Google Scholar
  3. 3.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Vis. Comput. Graph. 13(5), 902–913 (2007) Google Scholar
  4. 4.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3d statistical shape models using direct optimization of description length. Lect. Not. Comput. Sci. 2352, 3–20 (2002) CrossRefGoogle Scholar
  5. 5.
    Huang, Q., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27(5) (2008) (Special Issue of Symposium on Geometry Processing 2008) Google Scholar
  6. 6.
    Jain, V., Zhang, H., van Kaick, O.: Non-rigid spectral correspondence of triangle meshes. Int. J. Shape Model. 13(1), 101–124 (2007). Special Issue of SMI 2006 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3), 399–407 (2005). Proceedings of SIGGRAPH CrossRefGoogle Scholar
  8. 8.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–96 (2003) CrossRefGoogle Scholar
  9. 9.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 865–875 (2005) Google Scholar
  10. 10.
    Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005) Google Scholar
  11. 11.
    Lee, T.-Y., Lin, P.-H., Yan, S.-U., Lin, C.-H.: Mesh decomposition using motion information from animation sequences: Animating geometrical models. Comput. Animat. Virtual Worlds 16(3–4), 519–529 (2005) CrossRefGoogle Scholar
  12. 12.
    Lee, T.-Y., Wang, Y.-S., Chen, T.-G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22(9), 729–739 (2006) CrossRefGoogle Scholar
  13. 13.
    Lewis, J., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation (2000) Google Scholar
  14. 14.
    Lien, J.-M., Amato, N.M.: Approximate convex decomposition of polygons. Comput. Geom. Theory Appl. 35(1), 100–123 (2006) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26, 385–394 (2007). (Special Issue of Eurographics 2007) CrossRefGoogle Scholar
  16. 16.
    Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2005) Google Scholar
  17. 17.
    Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008). zbMATHCrossRefGoogle Scholar
  18. 18.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of Shape Modeling International (2004) Google Scholar
  19. 19.
    Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Reading (2002) Google Scholar
  20. 20.
    Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004). Proceedings of SIGGRAPH CrossRefGoogle Scholar
  21. 21.
    Tierny, J., Vandeborre, J.-P., Daoudi, M.: Invariant high level reeb graphs of 3D polygonal meshes. In: 3rd IEEE International Symposium on 3D Data Processing Visualization Transmission (2006) Google Scholar
  22. 22.
    Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum 27(5) (2008). (Special Issue of Symposium on Geometry Processing 2008) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.National Research Council of CanadaOttawaCanada

Personalised recommendations