Advertisement

The Visual Computer

, Volume 26, Issue 2, pp 121–136 | Cite as

High quality surface remeshing with equilateral triangle grid

  • Bin-Shyan Jong
  • Chien-Hsing ChiangEmail author
  • Pai-Feng Lee
  • Tsong-Wuu Lin
Original Article

Abstract

This study proposes a robust and efficient 3D surface remeshing algorithm for mesh quality optimization. Instead of the global mesh relaxation method proposed in the previous study conducted on remeshing, this study proposes an equilateral triangle grid-resampling scheme for achieving mesh optimization more efficiently. In order to improve the feasibility of resampling by directly using an equilateral triangle grid, the surface structure of the original model is correctly extracted by an automatic surface segmentation technique before the resampling step is executed. Results of this study show that the proposed remeshing algorithm can automatically and substantially improve the quality of triangulation, as well as automatically preserve shape features under an acceptable level of measurement error in the shape approximation, which is suitable for a mesh with a specific topology.

Keywords

Remeshing Mesh optimization Surface segmentation Shape feature preservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003) CrossRefGoogle Scholar
  2. 2.
    Alliez, P., Desbrun, M.: Valence-driven connectivity encoding of 3d meshes. Comput. Graph. Forum 20(3), 480–489 (2001) CrossRefGoogle Scholar
  3. 3.
    Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. State-of-the-art report (2005) Google Scholar
  4. 4.
    Alliez, P., de Verdière, É.C., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Proceedings of Shape Modeling International, Seoul, Korea, May 2003, pp. 49–58 (2003) Google Scholar
  5. 5.
    Attene, M., Spagnuolo, M., Falcidieno, B.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006) CrossRefGoogle Scholar
  6. 6.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Edge-sharpener: Recovering sharp features triangulations of non-adaptively re-meshed surfaces. In: Proceedings of Eurographics Symp. Geometry Processing, pp. 63–72 (2003) Google Scholar
  7. 7.
    Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 17–351. North-Holland, Amsterdam (1991). Finite Element Methods (Part 1) Google Scholar
  8. 8.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998) CrossRefGoogle Scholar
  9. 9.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004) CrossRefGoogle Scholar
  10. 10.
    Dong, S., Kircher, S., Garland, M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Comput.-Aided Geom. Des. 22(5), 392–423 (2005). Special Issue on Geometry Processing zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Floater, M.S., Hormann, K.: Surface parameterization:a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Frey, P., Borouchaki, H.: Surface mesh evaluation. In: Int’l Meshing Roundtable, pp. 363–374 (1997) Google Scholar
  14. 14.
    Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH 97, Los Angeles, August 1997, pp. 209–216 (1997) Google Scholar
  15. 15.
    Gopi, M., Krishnan, S.: A fast and efficient projection-based approach for surface reconstruction. High Perform. Comput. Graph., Multimed. Vis. 1(1), 1–12 (2000) Google Scholar
  16. 16.
    Gopi, M., Krishnan, S., Silva, C.T.: Surface reconstruction based on lower dimensional localized Delaunay triangulation. Comput. Graph. Forum 19(3), 467–478 (2000) CrossRefGoogle Scholar
  17. 17.
    Guskov, I., Vidimce, K., Sweldens, W., Schröder, P.: Normal meshes. In: Proceedings of ACM SIGGRAPH 00, New Orleans, USA, July 2000, pp. 95–102 (2000) Google Scholar
  18. 18.
    Ioana, B.M., Rushmeier, H., Jin, J.: Parameterization of triangle meshes over quadrilateral domains. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, July 2004, pp. 193–203 (2004) Google Scholar
  19. 19.
    Jong, B.-S., Chung, W.-Y., Lee, P.-F., Tseng, J.-L.: Efficient surface reconstruction using local vertex characteristics. In: The 2005 International Conference on Imaging Science, Systems, and Technology: Computer Graphics, Las Vegas, USA, June 2005, pp. 62–68 (2005) Google Scholar
  20. 20.
    Khodakovsky, A., Guskov, I.: Compression of normal meshes. In: Brunnett, G., Hamann, B., Muller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 189–206. Springer, Heidelberg (2004) Google Scholar
  21. 21.
    Khodakovsky, A., Litke, N., Schröder, P.: Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22(3), 350–357 (2003) CrossRefGoogle Scholar
  22. 22.
    Lai, Y.-K., Kobbelt, L., Hu, S.-M.: An incremental approach to feature-aligned quad-dominant remeshing. In: Proceedings of ACM Symposium on Solid and Physical Modeling, pp. 1.7–145 (2008) Google Scholar
  23. 23.
    Lee, A.W.F., Sweldens, W., Schroeder, P., Cowsar, L., Dobkin, D.: MAPS: Multiresolution adaptive parameterization of surfaces. In: Proceedings of ACM SIGGRAPH 98, Orlando, USA, July 1998, pp. 95–104 (1998) Google Scholar
  24. 24.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002) CrossRefGoogle Scholar
  25. 25.
    Marinov, M., Kobbelt, L.: Direct anisotropic quad-dominant remeshing. In: Proceedings of Pacific Graphics 04, Seoul, Korea, October 2004, pp. 207–216 (2004) Google Scholar
  26. 26.
    Marinov, M., Kobbelt, L.: Automatic generation of structure preserving multiresolution models. Comput. Graph. Forum 24(3), 479–486 (2005) CrossRefGoogle Scholar
  27. 27.
    Marinov, M., Kobbelt, L.: A robust two-step procedure for quad-dominant remeshing. Comput. Graph. Forum 25(3), 537–546 (2006) CrossRefGoogle Scholar
  28. 28.
    Payan, F., Antonini, M.: 3D mesh wavelet coding using efficient model-based bit allocation. In: Proceedings of IEEE International Symposium on 3D Data Processing Visualization and Transmission, pp. 391–395 (2002) Google Scholar
  29. 29.
    Payan, F., Antonini, M.: Model-based bit allocation for normal mesh compression. In: Proceedings of IEEE International Workshop on MultiMedia Signal Processing, pp. 327–330 (2004) Google Scholar
  30. 30.
    Shewchuk, J.R.: Triangle: A two-dimensional quality mesh generator and Delaunay triangulator. http://www.cs.cmu.edu/~quake/triangle.html
  31. 31.
    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: Proceedings of 12th International Meshing Roundtable, Santa Fe, New Mexico, September 2003, pp. 215–224 (2003) Google Scholar
  32. 32.
    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Aachen, Germany, June 2003, pp. 20–30 (2003) Google Scholar
  33. 33.
    Szymczak, A., Rossignac, J., King, D.: Piecewise regular meshes: construction and compression. Graph. Models 64, 183–198 (2002) zbMATHCrossRefGoogle Scholar
  34. 34.
    Turk, G.: Re-tiling polygonal mesh. In: Proceedings of ACM SIGGRAPH 92, Chicago, July 1992, pp. 55–64 (1992) Google Scholar
  35. 35.
    Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14(2), 369–381 (2008) CrossRefGoogle Scholar
  36. 36.
    Yue, W., Guo, Q., Zhang, J., Wang, G.: 3D triangular mesh optimization for geometry processing in CAD. In: Proceedings of ACM Solid and Physical Modeling Symposium, pp. 23–34 (2007) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bin-Shyan Jong
    • 1
  • Chien-Hsing Chiang
    • 2
    Email author
  • Pai-Feng Lee
    • 3
  • Tsong-Wuu Lin
    • 4
  1. 1.Department of Information and Computer EngineeringChung Yuan Christian UniversityChung-LiROC
  2. 2.Department of Electronic EngineeringChung Yuan Christian UniversityChung-LiROC
  3. 3.Department of Information ManagementHsing Wu CollegeTaipei CityROC
  4. 4.Department of Science and Information ManagementSooChow UniversityTaipei CityROC

Personalised recommendations